×

Convolutions with kernels having singularities of a sphere. (English) Zbl 0199.17502


MSC:

44A35 Convolution as an integral transform
35L05 Wave equation
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] I. M. Gel’fand and G. E. Šilov, Generalized functions. Vol. I: Operations on them, Fizmatgiz, Moscow, 1958; English transl., Academic Press, New York, 1964. MR 20 #4182; MR 29 #3869.
[2] Carl S. Herz, On the mean inversion of Fourier and Hankel transforms, Proc. Nat. Acad. Sci. U. S. A. 40 (1954), 996 – 999. · Zbl 0059.09901
[3] Lars Hörmander, Estimates for translation invariant operators in \?^{\?} spaces, Acta Math. 104 (1960), 93 – 140. · Zbl 0093.11402 · doi:10.1007/BF02547187
[4] Richard A. Hunt, An extension of the Marcinkiewicz interpolation theorem to Lorentz spaces, Bull. Amer. Math. Soc. 70 (1964), 803 – 807. · Zbl 0145.38203
[5] Walter Littman, The wave operator and \?_{\?} norms, J. Math. Mech. 12 (1963), 55 – 68. · Zbl 0127.31705
[6] J. Marcinkiewicz and A. Zygmund, Some theorems on orthogonal systems, Fund. Math. 28 (1937), 309-335.
[7] Elias M. Stein, Interpolation of linear operators, Trans. Amer. Math. Soc. 83 (1956), 482 – 492. · Zbl 0072.32402
[8] Elias M. Stein, Localization and summability of multiple Fourier series, Acta Math. 100 (1958), 93 – 147. · Zbl 0085.28401 · doi:10.1007/BF02559603
[9] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, England; The Macmillan Company, New York, 1944. · Zbl 0063.08184
[10] A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge University Press, New York, 1959. · Zbl 0085.05601
[11] S. Bochner, Theta relations with spherical harmonics, Proc. Nat. Acad. Sci. U. S. A. 37 (1951), 804 – 808. · Zbl 0044.07501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.