zbMATH — the first resource for mathematics

The concept of capacity in the theory of functions with generalized derivatives. (English. Russian original) Zbl 0199.20701
Sib. Math. J. 10(1969), 818-842 (1970); translation from Sib. Mat. Zh. 10, 1109-1138 (1969).

Full Text: DOI
[1] B. Fuglede, ?Extremal length and functional completion,? Acta Math.,98, 171-219 (1957). · Zbl 0079.27703 · doi:10.1007/BF02404474
[2] N. Aronszajn and K. T. Smith, ?Theory of Bessel potentials,? Part I, Ann. de I’Inst. Fourier,11, 385-475 (1961). · Zbl 0102.32401
[3] N. Aronszajn, Fual Mulla, and P. Szeptycki ?On spaces of potentials connected with LP classes,? Ann. de I’Inst. Fourier,13, 211-306 (1963).
[4] A. P. Calderon, ?Lebesgue spaces of differentiable functions and distributions,? Proc. of Symp. in Pure Math., Vol. IV, Partial Differential Equations, 33-49 (1961).
[5] N. Aronszajn, ?Potentials besseliens,? Ann. de I’inst. Fourier,15, 43-58 (1965).
[6] V. G. Maz’ya, ?The polyharmonic capacity in the theory of the first boundary value problem,? Sibirsk. Matem. Zh.,6, No. 1, 127-168 (1965).
[7] A. M. Molchanov, ?Conditions for the discreteness of the spectrum of self-adjoint differential, equations of second order,? Trudy Mosk. Matem. Obshch.,2, 169-199 (1963).
[8] V. A. Kondrat’ev, ?On the solvability of the first boundary value problem for strongly elliptic equations,? Trudy Mosk. Matem. Obshch.,16, 293-318 (1967).
[9] M. Brelot, Foundations of Classical Potential Theory [Russian translation], Mir, Moscow (1964).
[10] R. Nevanlinna, Single-Valued Analytic Functions [Russian translation], GTTI, Moscow-Leningrad (1941).
[11] N. S. Landkof, Foundations of Modern Potential Theory [in Russian], Nauka, Moscow (1966). · Zbl 0253.31001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.