×

zbMATH — the first resource for mathematics

Classifying spaces and spectral sequences. (English) Zbl 0199.26404

MSC:
55R25 Sphere bundles and vector bundles in algebraic topology
55T99 Spectral sequences in algebraic topology
Keywords:
topology
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] M. F. Atiyah andF. Hirzebruch, Vector bundles and homogeneous spaces,Differential Geometry, Proc. of Symp. in Pure Math.,3, Amer. Math. Soc. 7–38.
[2] H. Cartan andS. Eilenberg,Homological algebra, Princeton University Press, 1956. · Zbl 0075.24305
[3] A. Dold, Partitions of unity in the theory of fibrations,Ann. of Math.,78 (1963), 223–255. · Zbl 0203.25402 · doi:10.2307/1970341
[4] S. Eilenberg andN. E. Steenrod,Foundations of algebraic topology, Princeton University Press, 1952. · Zbl 0047.41402
[5] R. Godement,Topologie algébrique et théorie des faisceaux, Paris, Hermann, 1958. · Zbl 0080.16201
[6] A. Grothendieck, Théorie de la descente, etc.,Séminaire Bourbaki,195 (1959–1960).
[7] J. L. Kelley,General topology, Princeton, Van Nostrand, 1955. · Zbl 0066.16604
[8] J. Milnor, Construction of universal bundles, I,Ann. of Math.,63 (1956), 272–284. · Zbl 0071.17302 · doi:10.2307/1969609
[9] J. Milnor, The realization of a semi-simplicial complex,Ann. of Math.,65 (1957), 357–362. · Zbl 0078.36602 · doi:10.2307/1969967
[10] J. Milnor, Axiomatic homology theory,Pacific J. Math.,12 (1962), 337–341. · Zbl 0114.39604
[11] R. S. Palais, The classification of G-spaces,Mem. Amer. Math. Soc.,36, 1960. · Zbl 0119.38403
[12] M. Rothenberg andN. E. Steenrod, The cohomology of classifying spaces of H-spaces,Bull. Amer. Math. Soc.,71 (1965), 872–875. · Zbl 0132.19201 · doi:10.1090/S0002-9904-1965-11420-3
[13] G. B. Segal, EquivariantK-theory,Publ. math. I.H.E.S.,34 (1968).
[14] P. Gabriel andM. Zisman, Calculus of fractions and homotopy theory,Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 35, Berlin, Springer, 1967. · Zbl 0186.56802
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.