×

zbMATH — the first resource for mathematics

Rings whose cyclic modules have finitely generated socle. (English) Zbl 0199.35503

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Azumaya, G, Corrections and supplementaries to my paper concerning krullremak-Schmidt’s theorem, Nagoya math. J., 1, 117-124, (1950) · Zbl 0040.01201
[2] Bass, H, Finitistic dimension and a homological generalization of semi-primary rings, Trans. amer. math. soc., 95, 466-488, (1960) · Zbl 0094.02201
[3] Cartan, H; Eilenberg, S, Homological algebra, (1956), Princeton Univ. Press Princeton, N.J · Zbl 0075.24305
[4] Chase, S.U, Direct products of modules, Trans. amer. math. soc., 97, 457-473, (1960) · Zbl 0100.26602
[5] Eckmann, B; Schopf, A, Uber injektive moduln, Arch. math., 4, 75-78, (1953) · Zbl 0050.25904
[6] Faith, C; Walker, E, Direct sum representations of injective modules, J. algebra, 5, 203-221, (1967) · Zbl 0173.03203
[7] Goldie, A.W, Semi-prime rings with maximum conditions, (), 201-220, (3) · Zbl 0091.03304
[8] Jacobson, N, Structure of rings, Amer. math. soc. coll. publ., 37, (1964)
[9] Jans, J, Rings and homology, (1964), Holt, Rinehart & Winston New York · Zbl 0141.02901
[10] Matlis, E, Injective modules over Noetherian rings, Pac. J. math., 8, 511-528, (1958) · Zbl 0084.26601
[11] Osofsky, B, A counter-example to a lemma of skornjakov, Pac. J. math., 3, 985-987, (1965), (15) · Zbl 0145.26602
[12] Osofsky, B, A generalization of quasi-Frobenius rings, J. algebra, 4, 373-387, (1966) · Zbl 0171.29303
[13] Rosenberg, A; Zelinsky, D, Finiteness of the injective hull, Math. Z., 70, 372-380, (1959) · Zbl 0084.26505
[14] Vamos, P, The dual notion of “finitely generated”, J. London math soc., 43-44, 643-646, (1968) · Zbl 0164.04003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.