Uhlenbeck, K. Morse theory on Banach manifolds. (English) Zbl 0199.43102 Bull. Am. Math. Soc. 76, 105-106 (1970). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 4 Documents Keywords:variational calculus × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Richard S. Palais, Morse theory on Hilbert manifolds, Topology 2 (1963), 299 – 340. · Zbl 0122.10702 · doi:10.1016/0040-9383(63)90013-2 [2] Richard S. Palais, Lusternik-Schnirelman theory on Banach manifolds, Topology 5 (1966), 115 – 132. · Zbl 0143.35203 · doi:10.1016/0040-9383(66)90013-9 [3] Richard S. Palais, Foundations of global non-linear analysis, W. A. Benjamin, Inc., New York-Amsterdam, 1968. · Zbl 0164.11102 [4] S. Smale, Morse theory and a non-linear generalization of the Dirichlet problem, Ann. of Math. (2) 80 (1964), 382 – 396. · Zbl 0131.32305 · doi:10.2307/1970398 [5] S. Smale, Morse theory on Finsler manifolds (unpublished article). · Zbl 0166.36102 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.