×

zbMATH — the first resource for mathematics

A classification of linear controllable systems. (English) Zbl 0199.48202

MSC:
93C05 Linear systems in control theory
93C15 Control/observation systems governed by ordinary differential equations
93B05 Controllability
93B52 Feedback control
49N35 Optimal feedback synthesis
Keywords:
control theory
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] V. M. Popov: Hyperstability and optimality of automatic systems with several control functions. Rev. Roumaine Sci. Tech., Electrotechn. et Energ. 9 (1964), 629-690.
[2] V. M. Popov: Hyperstabilitatea sistemelor automate. Editura Academiei Rep. Soc. Romania, Bucharest 1966.
[3] E. G. Gilbert: The decoupling of multivariable systems by state feedback. SIAM Journal on Control 7 (1969), 50-63. · Zbl 0175.10301
[4] W. A. Wolowich: On the stabilization of controllable systems.
[5] R. E. Kalman: Algebraic aspects of the theory of dynamical systems. Differential equations and dynamical systems by J. K. Hale and J. P. LaSalle, Academic Press 1967, 133-146. · Zbl 0207.39501
[6] П. Бруновскы: О стабилизации линейных систем при определенном классе постоянно действующих возмущений. Дифференциальные уравнения 2 (1966), 769-777. · Zbl 1155.78304
[7] P. Brunovský: Controllability and linear closed-loop controls in linear periodic systems. Journal of Differential equations 6 (1969), 296-313. · Zbl 0176.06301
[8] C. E. Langenhop: On the stabilization of linear systems. Proc. Am. Math. Soc. 15 (1964), 735-742. · Zbl 0129.06303
[9] W. M. Wonham: On pole assignment in multi-input controllable linear systems. IEEE Transactions on automatic control AC-12 (1967), 660-665.
[10] G. H. Hardy E. M. Wright: An Introduction to the theory of numbers. Clarendon 1938. · Zbl 0020.29201
[11] V. Doležal: The existence of a continuous basis of a certain linear subspace of \(E_r\) which depends on a parameter. Čas. pěst. mat. 89 (1964), 466-469.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.