zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The finite element method for elliptic equations with discontinuous coefficients. (English) Zbl 0199.50603

WorldCat.org
Full Text: DOI
References:
[1] Rivkind, V. Ja.: On an estimate of the rapidity of convergence of homogenous difference schemes for elliptical and parabolic equations with discontinuous coefficients (Russian). Problems Math. Anal., Boundary Value Problems, Integr. Equations (Russian), pp. 110--119, Izd. Leningr. Univ. Leningrad. 1966.
[2] Babuška, I.: Numerical solution of boundary value problems by perturbed variational principle. Technical note BN-624, Univ. of Maryland, The Inst. for Fluid. Dyn. and Appl. Math. 1969.
[3] Lions, J. L., andE. Magenes: Problèmes aux limits non homogènes et applications. V.I. Paris: Dunod. 1968.
[4] Babuška, I.: Approximation by hill functions. Technical note BN-648, Univ. of Maryland, The Inst. for Fluid. Dyn. and Appl. Math. 1970. · Zbl 0215.46404
[5] Šefteł, Z. G.: A general theory of boundary value problems for elliptic systems with discontinuous coefficients (Russian), Ukrain. Math. Ž.18, 132--136 (1966). · Zbl 0156.34402 · doi:10.1007/BF02537868
[6] Šefteł, Z. G.: Energy inequalities and general boundary problems for elliptic equations with discontinuous coefficients (Russian). Sibirsk Math. Ž.6, 636--668 (1965).
[7] Šefteł, Z. G.: The solution inL p and the classical solution of general boundary value problems for elliptical equations with discontinuous coefficients (Russian). Uspechi Math. Nauk19, 230--232 (1964).