Ein Satz vom Lefschetzschen Typ über die Fundamentalgruppe quasi- projektiver Schemata. (German) Zbl 0199.55801

Full Text: DOI EuDML


[1] Abhyankar, S.: On the ramification of algebraic functions. Amer. J. Math.77, 575-592 (1965). · Zbl 0064.27501
[2] Abhyankar, S.: Ramification and resolution. International Conference Madrid 1965. · Zbl 0147.20503
[3] Chow, W.-L.: On the principle of degeneration in algebraic geometry. Ann. of Math.66, 70-79 (1957). · Zbl 0079.06104
[4] Grothendieck, A.: Séminaire de géométrie algébrique 1962. Institut des Hautes Études Scientifiques. Paris 1966.
[5] ? Dieudonne, J.: Éléments de géométrie at algébrique. Publications Mathématiques de l’Institut des Hautes Études Scientifique, Paris 1960f.
[6] Hironaka, H.: Resolution of singularities of an algebraic variety over a field of characteristic 0. Ann. of Math.79, 109-326 (1964). · Zbl 0122.38603
[7] Lang, S.: Introduction to algebraic geometry. New York: Interscience Publishers 1958. · Zbl 0095.15301
[8] Murre, J. P.: Introduction to Grothendrecks theory of foundamental groups. Lecture notes, Tata Institut, 1967.
[9] Zariski, O.: A theorem on the Poincaré group of an algebraic hypersurface. Ann. of Math.38, 131-141 (1973). · JFM 63.0621.03
[10] Zariski, O.: Introduction to the problem of minimal models in the theory of algebraic surfaces. Publications of the Math. Soc. of Japan4, Tokyo 1958. · Zbl 0093.33904
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.