×

zbMATH — the first resource for mathematics

Remeshed smoothed particle hydrodynamics for the simulation of laminar chemically reactive flows. (English) Zbl 1054.76069
Summary: We present an extension of remeshed smooth particle hydrodynamics (RSPH) method for the simulation of chemically reactive flows. The governing conservation equations are solved in a Lagrangian fashion, while particle locations, which are distorted by the flow, are periodically re-initialized (remeshed) on a grid. The RSPH implementation is employed for the simulation of a hydrogen/air opposed-jet burner with detailed chemistry and transport. The effects of particle number (resolution), compressibility (Mach number) and outflow boundary condition (length of the domain) on the solution are considered. The RSPH computational results are compared with numerical results obtained by a spectral element implicit scheme and by a one-dimensional code. It is shown that RSPH provides a flexible and accurate alternative for numerical simulation of chemically reacting flows.

MSC:
76M28 Particle methods and lattice-gas methods
76V05 Reaction effects in flows
80A32 Chemically reacting flows
Software:
OPPDIF
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Chung, T.J., Numerical modeling in combustion, (1993), Taylor and Francis Washington, DC
[2] Lappas, T.; Leonard, A.; Dimotakis, P.E., An adaptive Lagrangian method for computing 1-D reacting and nonreacting flows, J. comput. phys., 104, 361, (1993) · Zbl 0766.76073
[3] Ghoniem, A.F.; Givi, P., Lagrangian simulation of a reacting mixing layer at low heat release, Aiaa j., 26, 690, (1988)
[4] Ghoniem, A.F.; Heidarinejad, G., Effect of 2-dimensional shear-layer dynamics on mixing and combustion at low heat release, Combust. sci. technol., 72, 79, (1990)
[5] Yu, S., A random numerical-method with application in combustion, J. comput. math., 11, 113, (1993) · Zbl 0769.76056
[6] Givi, P., Spectral and random vortex methods in turbulent reacting flows, () · Zbl 0856.76058
[7] Krishnan, A.; Ghoniem, A.F., Simulation of rollup and mixing in rayleigh – taylor flow using the transport-element method, J. comput. phys., 99, 1, (1992) · Zbl 0741.76020
[8] Soteriou, M.C.; Ghoniem, A.F., Effects of the free-stream density ratio on free and forced spatially developing shear layers, Phys. fluids, 7, 2036, (1995) · Zbl 1032.76547
[9] M.C. Soteriou, A.F. Ghoniem, Numerical Simulation of Unsteady Combustion Using the Transport Element Method, ESAIM Proceedings, (European Series in Applied and Industrial Mathematics), Montréal, Canada, 1996 · Zbl 0875.76418
[10] Greengard, C., The core spreading vortex method approximates the wrong equation, J. comput. phys., 61, 345, (1985) · Zbl 0587.76039
[11] Battaglia, F.; Givi, P., Direct Lagrangian simulations of a mixing layer by the transport-element method, J. non-equilib. thermodyn., 18, 173, (1993)
[12] Soteriou, M.C.; Ghoniem, A.F., On the effects of the inlet boundary condition on the mixing and burning in reacting shear flows, Combust. flame, 112, 404, (1998)
[13] O’ Rourke, P.J.; Brackbill, J.U.; Larrouturou, B., On particle grid interpolation and calculating chemistry in particle-in-cell methods, J. comput. phys., 109, 37, (1993) · Zbl 0807.65135
[14] Lapenta, G.; Brackbill, J.U., Control of the number of particles in fluid and MHD particle-in-cell methods, Comput. phys. commun., 87, 139, (1995) · Zbl 0923.76194
[15] Chaniotis, A.K.; Poulikakos, D.; Koumoutsakos, P., Remeshed smoothed particle hydrodynamics for the simulation of viscous and heat conducting flows, J. comput. phys., 182, 67, (2002) · Zbl 1048.76046
[16] Williams, F.A., Combustion theory, (1985), Benjamin/Cummings Publishing Company Menlo Park, CA
[17] Kuo, K.K., Principles of combustion, (1986), Wiley New York · Zbl 1050.80503
[18] R.J. Kee, G. Dixon-Lewis, J. Warnatz, M.E. Coltrin, J.A. Miller, A Fortran computer package for the evaluation of gas-phase, multicomponent transport properties. Report No. Sandia Report SAND86-8246, 1986
[19] Coffee, T.P.; Heimerl, J.M., Transport algorithms for premixed, laminar steady-state flames, Combust. flame, 43, 273, (1981)
[20] A.E. Lutz, R.J. Kee, J.F. Grcar, F.M. Rupley, OPPDIF: a Fortran program for computing opposed-flow diffusion flames. Report No. Sandia Report SAND96-8243, 1997
[21] Monaghan, J.J., Particle methods for hydrodynamics, Comput. phys. rep., 3, 71, (1985)
[22] Monaghan, J.J., Smoothed particle hydrodynamics, Annu. rev. astron. astrophys., 30, 543, (1992)
[23] Morris, J.P.; Fox, P.J.; Zhu, Y., Modeling low Reynolds number incompressible flows using SPH, J. comput. phys., 136, 214, (1997) · Zbl 0889.76066
[24] Watkins, S.J.; Bhattal, A.S.; Francis, N.; Turner, J.A.; Whitworth, A.P., A new prescription for viscosity in smoothed particle hydrodynamics, Astron. astrophys. suppl. ser., 119, 177, (1996)
[25] Cleary, P.W.; Monaghan, J.J., Conduction modelling using smoothed particle hydrodynamics, J. comput. phys., 148, 227, (1999) · Zbl 0930.76069
[26] Schoenberg, I.J., Contribution to the problem of approximation of equidistant data by analytic functions, Quart. J. appl. math., 4, 45, (1946) · Zbl 0061.28804
[27] Koumoutsakos, P., Inviscid axisymmetrization of an elliptical vortex, J. comput. phys., 138, 821, (1997) · Zbl 0902.76080
[28] Cottet, G.H.; Koumoutsakos, P.D., Vortex methods: theory and practice, (2000), Cambridge University Press Cambridge, London
[29] Poinsot, T.J.; Lele, S.K., Boundary-conditions for direct simulations of compressible viscous flows, J. comput. phys., 101, 104, (1992) · Zbl 0766.76084
[30] Byrne, G.D., Pragmatic experiments with Krylov methods in the stiff ODE setting, () · Zbl 0769.65038
[31] Yetter, R.A.; Dryer, F.L.; Rabitz, H., A comprehensive reaction-mechanism for carbon-monoxide hydrogen oxygen kinetics, Combust. sci. technol., 79, 97, (1991)
[32] Tomboulides, A.G.; Lee, J.C.; Orszag, S.A., Numerical simulation of low Mach number reactive flows, J. sci. comput., 12, 139, (1997) · Zbl 0905.76055
[33] Frouzakis, C.E.; Lee, J.C.; Tomboulides, A.G.; Boulouchos, K., Two-dimensional direct numerical simulation of opposed-jet hydrogen/air diffusion flame, Proc. comb. inst., 27, 571, (1998)
[34] Frouzakis, C.E.; Tomboulides, A.G.; Lee, J.; Boulouchos, K., From diffusion to premixed flames in an H-2/air opposed-jet burner: the role of edge flames, Combust. flame, 130, 171, (2002)
[35] HP, Parallel Programming Guide for HP-UX Systems, Document Number: B3909-90008, HP-ux 11i version 1.5, 2001
[36] Plimpton, S., Fast parallel algorithms for short-range molecular-dynamics, J. comput. phys., 117, 1, (1995) · Zbl 0830.65120
[37] Gonzalez, M., Acoustic instability of a premixed flame propagating in a tube, Combust. flame, 107, 245, (1996)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.