×

zbMATH — the first resource for mathematics

Schauder bases in spaces of differentiable functions. (English) Zbl 0201.16101

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Stefan Banach, Théorie des opérations linéaires, Chelsea Publishing Co., New York, 1955 (French). · Zbl 0005.20901
[2] P. L. Butzer, On two-dimensional Bernstein polynomials, Canadian J. Math. 5 (1953), 107 – 113. · Zbl 0050.07002
[3] Z. Ciesielski, Properties of the orthonormal Franklin system. II, Studia Math. 27 (1966), 289 – 323. · Zbl 0148.04702
[4] Mahlon M. Day, Normed linear spaces, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg;, 1962. · Zbl 0100.10802
[5] B. R. Gelbaum and J. Gil de Lamadrid, Bases of tensor products of Banach spaces, Pacific J. Math. 11 (1961), 1281 – 1286. · Zbl 0106.08604
[6] M. Krein, D. Milman, and M. Rutman, A note on basis in Banach space, Comm. Inst. Sci. Math. Méc. Univ. Kharkoff [Zapiski Inst. Mat. Mech.] (4) 16 (1940), 106 – 110 (Russian, with English summary). · Zbl 0023.13105
[7] Z. Semadeni, Product Schauder bases and approximation with nodes in spaces of continuous functions, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 11 (1963), 387 – 391. · Zbl 0124.31703
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.