×

zbMATH — the first resource for mathematics

On the Fredholm alternative for nonlinear operators. (English) Zbl 0201.17902

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Errett Bishop and R. R. Phelps, The support functionals of a convex set, Proc. Sympos. Pure Math., Vol. VII, Amer. Math. Soc., Providence, R.I., 1963, pp. 27 – 35.
[2] Felix E. Browder, Nonlinear operators and nonlinear equations of evolution in Banach spaces, Nonlinear functional analysis (Proc. Sympos. Pure Math., Vol. XVIII, Part 2, Chicago, Ill., 1968) Amer. Math. Soc., Providence, R. I., 1976, pp. 1 – 308.
[3] M. Edelstein, On nearest points of sets in uniformly convex Banach spaces, J. London Math. Soc. 43 (1968), 375 – 377. · Zbl 0183.40403 · doi:10.1112/jlms/s1-43.1.375 · doi.org
[4] Lawrence M. Graves, Some mapping theorems, Duke Math. J. 17 (1950), 111 – 114. · Zbl 0037.20401
[5] S. I. Pohožaev, Normal solvability of nonlinear equations, Dokl. Akad. Nauk SSSR 184 (1969), 40 – 43 (Russian).
[6] S. I. Pohožaev, Nonlinear operators which have a weakly closed range of values, and quasilinear elliptic equations, Mat. Sb. (N.S.) 78 (120) (1969), 237 – 259 (Russian).
[7] S. I. Pohožaev, Normal solvability of nonlinear equations in uniformly convex Banach spaces, Funkcional. Anal. i Priložen. 3 (1969), no. 2, 80 – 84 (Russian).
[8] S. Smale, An infinite dimensional version of Sard’s theorem, Amer. J. Math. 87 (1965), 861 – 866. · Zbl 0143.35301 · doi:10.2307/2373250 · doi.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.