×

zbMATH — the first resource for mathematics

On the inversion of moving averages, linear discrete equalizers and ’whitening’ filters, and series summability. (English) Zbl 0201.21704
Kybernetika, Praha 6, 225-240 (1970); Appendix. Ibid. 6, 325-326 (1970).

Full Text: EuDML
References:
[1] Prouza L.: On the Inversion of Moving Averages, Linear Discrete Equalizers and ”Whitening” Filters, and Series Summability. Kybernetika (1970). · Zbl 0201.21704
[2] Wold H.: On the Inversion of Moving Averages. Skand. Aktuarietidskr. (1938), 208-217. · Zbl 0020.14702
[3] Hill J. D.: The Borel property of summability methods. Pacif. J. Math. (1951), 399-409. · Zbl 0043.28603
[4] Frisch R.: On the Inversion of a Moving Average. Skand. Aktuarietidskr. (1938), 218-225. · Zbl 0020.14703
[5] Nagabhushanam K.: The primary process of a smoothing relation. Ark. för Mat. (1951), 421-488. · Zbl 0058.35502
[6] Hill J. D.: Remarks on the Borel property. Pacif. J. Math. (1954), 227-242. · Zbl 0057.29301
[7] Garreau G. A.: A Note on the Summation of Sequences of 0’ and 1’s. Annals of Math. (1951), 1, 183-185. · Zbl 0043.06104
[8] Di Toro M. J.: Communication in Time-Frequency Spread Media Using Adaptive Equalization. Proc. IEEE (1968), 1653-1679.
[9] Di Toro M. J.: Note on the Optimal Transversal Equalizer for a Dual Multipath Noiseless Channel. Proc. IEEE (1969), 809-810.
[10] Hill J. D.: Summability of sequences of 0’s and 1’s. Ann. of Math. (1945), 556-562. · Zbl 0060.16011
[11] Lorentz G. G.: Borel and Banach properties of methods of summation. Duke Math. J. (1955), 129-141. · Zbl 0065.04501
[12] Walsh J. L.: Interpolation and approximation by rational functions in the complex domain. (Russian translation). Inoizdat, Moscow 1961. · Zbl 0106.28103
[13] Prouza L.: ”Closed”-form formulas for the Kolmogorov - Wiener optimal prediction and filtration of stationary random sequences. (in Czech). Technika el. přístrojů (1965), 2, 45-46.
[14] Prouza L.: On the Smoothing of a Discrete Random Autoregressive Process. Kybernetika (1966), 5, 423-434.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.