×

zbMATH — the first resource for mathematics

A class of perfect determinantal ideals. (English) Zbl 0201.37201

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] David A. Buchsbaum and Dock S. Rim, A generalized Koszul complex. II. Depth and multiplicity, Trans. Amer. Math. Soc. 111 (1964), 197 – 224. · Zbl 0131.27802
[2] J. A. Eagon, Ideals generated by the subdeterminants of a matrix. Thesis, University of Chicago, Chicago, III., 1961.
[3] John A. Eagon, Examples of Cohen-Macauley rings which are not Gorenstein, Math. Z. 109 (1969), 109 – 111. · Zbl 0184.29201 · doi:10.1007/BF01111241 · doi.org
[4] J. A. Eagon and D. G. Northcott, Ideals defined by matrices and a certain complex associated with them., Proc. Roy. Soc. Ser. A 269 (1962), 188 – 204. · Zbl 0106.25603
[5] J. A. Eagon and D. G. Northcott, Generically acyclic complexes and generically perfect ideals, Proc. Roy. Soc. Ser. A 299 (1967), 147 – 172. · Zbl 0225.13004
[6] John Fogarty, Invariant theory, W. A. Benjamin, Inc., New York-Amsterdam, 1969. · Zbl 0686.14014
[7] M. Hochster, Generically perfect modules are strongly generically perfect, Proc. London Math. Soc. (3) 23 (1971), 477 – 488. · Zbl 0232.13014
[8] M. Hochster and John A. Eagon, Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci, Amer. J. Math. 93 (1971), 1020 – 1058. · Zbl 0244.13012 · doi:10.2307/2373744 · doi.org
[9] Irving Kaplansky, \?-sequences and homological dimension, Nagoya Math. J. 20 (1962), 195 – 199. · Zbl 0106.25702
[10] F. S. Macaulay, The algebraic theory of modular systems, Cambridge Tracts, 19 (1916). · JFM 46.0167.01
[11] David Mumford, Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue Folge, Band 34, Springer-Verlag, Berlin-New York, 1965. · Zbl 0147.39304
[12] D. G. Northcott, Semi-regular rings and semi-regular ideals, Quart. J. Math. Oxford Ser. (2) 11 (1960), 81 – 104. · Zbl 0112.03001 · doi:10.1093/qmath/11.1.81 · doi.org
[13] D. G. Northcott, Some remarks on the theory of ideals defined by matrices, Quart. J. Math. Oxford Ser. (2) 14 (1963), 193 – 204. · Zbl 0116.02504 · doi:10.1093/qmath/14.1.193 · doi.org
[14] D. G. Northcott, Generic perfection, Symposia Mathematica, Vol. XI (Convegno di Algebra Commutativa, INDAM, Rome, 1971) Academic Press, London, 1973, pp. 105 – 120.
[15] D. Rees, The grade of an ideal or module, Proc. Cambridge Philos. Soc. 53 (1957), 28 – 42. · Zbl 0079.26602
[16] T. G. Room, The geometry of determinantal loci, Cambridge Univ. Press, Cambridge, 1938. · Zbl 0020.05402
[17] D. W. Sharpe, On certain polynomial ideals defined by matrices, Quart. J. Math. Oxford Ser. (2) 15 (1964), 155 – 175. · Zbl 0119.03601 · doi:10.1093/qmath/15.1.155 · doi.org
[18] D. W. Sharpe, The syzygies and semi-regularity of certain ideals defined by matrices, Proc. London Math. Soc. (3) 15 (1965), 645 – 679. · Zbl 0136.31803 · doi:10.1112/plms/s3-15.1.645 · doi.org
[19] Hermann Weyl, The classical groups, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997. Their invariants and representations; Fifteenth printing; Princeton Paperbacks. · Zbl 1024.20501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.