×

zbMATH — the first resource for mathematics

Some results on Tchebycheffian spline functions and stochastic processes. (English) Zbl 0201.39702

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Anselone, P.M; Laurent, P.J, A general method for the construction of interpolating or smoothing spline functions, () · Zbl 0197.13501
[2] Aronszajn, N, Theory of reproducing kernels, Trans. amer. math. soc., 68, 337-404, (1950) · Zbl 0037.20701
[3] Attéia, M, Generalisation de la définition et des propriétés des “spline-fonctions”, C. R. acad. sci. Paris, 260, 3550-3553, (1965) · Zbl 0163.37703
[4] deBoor, C; Lynch, R.E, On splines and their minimum properties, J. math. mech., 15, 953-969, (1966) · Zbl 0185.20501
[5] Ferguson, D, The question of uniqueness for G. D. Birkhoff interpolation problems, J. approximation theory, 2, 1-28, (1969) · Zbl 0182.39202
[6] Greville, T.N.E; Schoenberg, I.J, Smoothing by generalized spline functions (abstract), SIAM rev., 7, 617, (1965)
[7] Jerome, J.W; Schumaker, L.L, On lg-splines, J. approximation theory, 2, 29-49, (1969) · Zbl 0172.34501
[8] Karlin, S, ()
[9] Karlin, S; Studden, W.J, Tchebycheff systems: with applications in analysis and statistics, (1966), Interscience · Zbl 0153.38902
[10] Karlin, S; Ziegler, Z, Chebyshevian spline functions, SIAM J. numer. anal., 3, 514-543, (1966) · Zbl 0171.31002
[11] Ritter, K, Splines and quadratic programming, () · Zbl 0194.09502
[12] Sard, A, Linear approximation, () · Zbl 0115.05403
[13] Schoenberg, I.J, Spline functions and the problem of graduation, (), 947-950 · Zbl 0147.32102
[14] Schoenberg, I.J, On best approximations of linear operators, Indag. math., 26, 155-163, (1964) · Zbl 0146.08501
[15] Schoenberg, I.J, On the ahlberg-nilson extension of spline interpolation: the g-splines and their optimal properties, J. math. anal. appl., 21, 207-231, (1968) · Zbl 0159.08401
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.