×

zbMATH — the first resource for mathematics

Contributions to Doeblin’s Theory of Markov processes. (English) Zbl 0201.50404

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Blackwell, D.: The existence of anormal chains. Bull. Amer. math. Soc. 51, 465-468 (1945). · Zbl 0063.00420
[2] Chacon, R. V.: Identification of the limit of operator averages. J. Math. and Mech. 11, 961-968 (1962). · Zbl 0139.34701
[3] Chung, K. L.: The general theory of Markov processes according to Doeblin. Z. Wahrscheinlichkeitstheorie verw. Geb. 2, 230-254 (1964). · Zbl 0119.34604
[4] ?: Markov chains with stationary transition probabilities. Berlin-Göttingen-Heidelberg: Springer 1960. · Zbl 0092.34304
[5] Derman, C.: Some contributions to the theory of denumerable Markov chains. Trans. Amer. math. Soc. 79, 541-555 (1955). · Zbl 0065.11405
[6] Doeblin, W.: Sur les propriétés asymptotiques de mouvement régis par certains types de chaÎns simples. Bull. math. Soc. Roumaine Sci. 39, No. 1, 57-115; No. 2, 3-61 (1937). · Zbl 0019.17503
[7] ?: Eléments d’une théorie générale des chaÎnes simple constantes de Markoff. Ann. sci. école norm. sup., III. Sér., 57, 61-111 (1940).
[8] Doob, J. L.: Stochastic processes. New York: Wiley and Sons 1953. · Zbl 0053.26802
[9] ?: Asymptotic properties of Markoff transition probabilities. Trans. Amer. math. Soc. 63, 393-438 (1948). · Zbl 0041.45406
[10] Foguel, S. R.: Limit theorems for Markov processes. Trans. Amer. math. Soc. 121, 200-209 (1966). · Zbl 0203.19601
[11] Harris, T. E.: The existence of stationary measures for certain Markov processes. Proc. Third Berkeley Sympos. math. Statist. Probability II, 113-124 (1956). · Zbl 0072.35201
[12] Isaac, R.: Non-singular recurrent Markov processes have stationary measures. Ann. math. Statistics 35, 869-871 (1964). · Zbl 0138.11501
[13] Jain, N. C.: Some limit theorems for a general Markov process. Z. Wahrscheinlichkeitstheorie verw. Geb. 6, 206-223 (1966). · Zbl 0234.60086
[14] Jamison, B., and S. Orey: Tail ?-field of Markov processes recurrent in the sense of Harris. To appear.
[15] Moy, S. T. C.: ?-continuous Markov chains. Trans. Amer. math. Soc. 117, 68-91 (1965). · Zbl 0137.11901
[16] ?: ?-continuous Markov chains II. Trans. Amer. math. Soc. 120, 83-107 (1966). · Zbl 0219.60050
[17] Nelson, E.: The adjoint Markoff process. Duke math. J. 25, 671-690 (1958). · Zbl 0084.13402
[18] Orey, S.: Recurrent Markov chains. Pacific J. Math. 9, 805-827 (1959). · Zbl 0095.32902
[19] ?idák, Z.: Classification of Markov chains with a general state space. Bull. Amer. math. Soc. 72, 149-152 (1966). · Zbl 0161.15102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.