×

zbMATH — the first resource for mathematics

Some remarks on the formal power series ring. (English) Zbl 0202.04801

PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] BOURBAKI (N.) . - Algèbre commutative . Chap. 5-6. - Paris, Hermann, 1964 , (Act. scient. et industr., 1308 ; Bourbaki, 30). Zbl 0205.34302 · Zbl 0205.34302
[2] GILMER (R.) . - R-automorphisms of R[[X]] , Michigan math. J., t. 17, 1970 , p. 15-21. Article | MR 40 #7250 | Zbl 0179.34501 · Zbl 0179.34501 · doi:10.1307/mmj/1029000370 · minidml.mathdoc.fr
[3] GILMER (R.) and HEINZER (W.) . - Rings of formal power series over a Krull domain , Math. Z., t. 106, 1968 , p. 379-387. Article | MR 38 #1082 | Zbl 0175.03802 · Zbl 0175.03802 · doi:10.1007/BF01115087 · eudml:171042
[4] KOLMAN (B.) . - On a theorem in complete U-adic rings , Proc. Amer. math. Soc., t. 19, 1968 , p. 681-684. MR 37 #207 | Zbl 0159.05001 · Zbl 0159.05001 · doi:10.2307/2035863
[5] NAGATA (M.) . - Local rings . - New York, Interscience, 1962 . MR 27 #5790 | Zbl 0123.03402 · Zbl 0123.03402
[6] O’MALLEY (M.) . - On the Weierstrass preparation theorem (submitted for publication) .
[7] O’MALLEY (M.) . - R-automorphisms of R[[X]] , Proc. London math. Soc., series 3, t. 20, 1970 , p. 60-78. MR 40 #7249 | Zbl 0186.35503 · Zbl 0186.35503 · doi:10.1112/plms/s3-20.1.60
[8] O’MALLEY (M.) and WOOD (C.) . - R-endomorphisms of R[[X]] , J. of Algebra, t. 15, No. 3, 1970 , p. 314-321. MR 41 #8407 | Zbl 0195.32902 · Zbl 0195.32902 · doi:10.1016/0021-8693(70)90061-X
[9] SAMUEL (P.) . - Groupes finis d’automorphismes des anneaux de séries formelles , Bull. Sc. math., 2e série, t. 90, 1966 , p. 97-101. MR 35 #180 | Zbl 0142.01002 · Zbl 0142.01002
[10] ZARISKI (O.) and SAMUEL (P.) . - Commutative algebra , vol 1. - Princeton, Van Nostrand, 1958 (University Series in higher Mathematics). MR 19,833e | Zbl 0081.26501 · Zbl 0081.26501
[11] ZARISKI (O.) and SAMUEL (P.) . - Commutative algebra , vol. 2. - Princeton, Van Nostrand, 1960 (University Series in higher Mathematics). MR 22 #11006 | Zbl 0121.27801 · Zbl 0121.27801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.