zbMATH — the first resource for mathematics

Bishop’s generalized Stone-Weierstraß theorem for weighted spaces. (English) Zbl 0202.12603

Full Text: DOI EuDML
[1] Bishop, E.: A generalization of the Stone-Weierstrass theorem. Pacific J. Math.11, 777-783 (1961). · Zbl 0104.09002
[2] Branges, L., de: The Stone-Weierstrass theorem. Proc. Amer. Math. Soc.10, 822-824 (1959). · Zbl 0092.11801
[3] Glicksberg, I.: Measures orthogonal to algebras and sets of antisymmetry. Trans. Amer. Math. Soc.104, 415-435 (1962). · Zbl 0111.11801 · doi:10.1090/S0002-9947-1962-0173957-5
[4] ?? Bishop’s generalized Stone-Weierstrass theorem for the strict topology. Proc. Amer. Math. Soc.14, 329-333 (1963). · Zbl 0113.31501
[5] Nachbin, L.: Weighted approximation for algebras and modules of continuous functions: real and self-adjoint complex cases. Ann. of Math.81, 289-302 (1965). · Zbl 0134.12603 · doi:10.2307/1970617
[6] – Machado, S., Prolla, J.B.: Weighted approximation, vector fibrations and algebras of operators. J. de Math. Pures et Appliquées (to appear). · Zbl 0238.46042
[7] Prolla, J.B.: Weighted spaces of vector-valued continuous functions. Ann. Mat. pura appl. (to appear). · Zbl 0224.46024
[8] Summers, W. H.: Weighted locally convex spaces of continuous functions. Ph. D. Dissertation, Louisiana State University, 1968.
[9] ?? Dual spaces of weighted spaces. Trans. Amer. Math. Soc.151, 323-333 (1970). · Zbl 0203.12401 · doi:10.1090/S0002-9947-1970-0270129-5
[10] Todd, C.: Stone-Weierstrass theorems for the strict topology. Proc. Amer. Math. Soc.16, 654-659 (1965). · Zbl 0141.12203 · doi:10.1090/S0002-9939-1965-0179645-1
[11] Wells, J.: Bounded continuous vector-valued functions on a locally compact space. Michigan Math. J.12, 119-126 (1965). · Zbl 0163.36301 · doi:10.1307/mmj/1028999252
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.