×

Maximal and minimal topologies. (English) Zbl 0202.22302


Full Text: DOI

References:

[1] P. Alexandrov and P. Urysohn, Une condition nécessaire et suffisante pour qu’une classe \( \mathfrak{L}\) soit une classe \( \mathfrak{D}\), C. R. Acad. Sci. Paris 177 (1923), 1274-1276. · JFM 50.0696.01
[2] C. E. Aull, A certain class of topological spaces, Prace Mat. 11 (1967), 49 – 53. · Zbl 0166.18301
[3] C. E. Aull, Sequences in topological spaces, Notices Amer. Math. Soc. 12 (1965), 222. Abstract #65T-79.
[4] C. E. Aull, Sequences in topological spaces, Prace Mat. 11 (1968), 329 – 336. · Zbl 0157.29303
[5] Manuel P. Berri, Minimal topological spaces, Trans. Amer. Math. Soc. 108 (1963), 97 – 105. · Zbl 0114.13902
[6] M. P. Berri, J. R. Porter and R. M. Stephenson, Jr., General topology and its relation to modern analysis and algebra. III, Proc. Conference Topology (Kanpur, 1968), Academic Press, New York, 1970.
[7] Nicolas Bourbaki, Espaces minimaux et espaces complètement séparés, C. R. Acad. Sci. Paris 212 (1941), 215 – 218 (French). · Zbl 0025.23901
[8] -, Topologie générale, 3rd ed., Actualités Sci. Indust., no. 1142, Hermann, Paris, 1961. MR 25 #4480.
[9] M. Fréchet, Sur quelques points du calcul fonctionnel, Rend. Circ. Mat. Palermo 22 (1906), 1-74. · JFM 37.0348.02
[10] Zdeněk Frolík, Generalisations of compact and Lindelöf spaces, Czechoslovak Math. J. 9 (84) (1959), 172 – 217 (Russian, with English summary). · Zbl 0098.14201
[11] Leonard Gillman and Meyer Jerison, Rings of continuous functions, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. · Zbl 0093.30001
[12] Edwin Hewitt, A problem of set-theoretic topology, Duke Math. J. 10 (1943), 309 – 333. · Zbl 0060.39407
[13] Shogo Ikenaga, Product of minimal topological spaces, Proc. Japan Acad. 40 (1964), 329 – 331. · Zbl 0129.37704
[14] J. E. Joseph, Continuous functions and spaces in which compact sets are closed, Amer. Math. Monthly 76 (1969), 1125 – 1126. · Zbl 0194.23401 · doi:10.2307/2317187
[15] Casimir Kuratowski, Topologie. Vol. II, Monografie Matematyczne, Tom XXI, Polskie Towarzystwo Matematyczne, Warszawa, 1952 (French). 2ème éd. · Zbl 0049.39704
[16] R. E. Larson, Minimum and maximum topological spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 18 (1970), 707 – 710. · Zbl 0202.53803
[17] Norman Levine, Simple extensions of topologies, Amer. Math. Monthly 71 (1964), 22 – 25. · Zbl 0121.17203 · doi:10.2307/2311297
[18] -, When are compact and closed equivalent?, Amer. Math. Monthly 72 (1965), 41-44. · Zbl 0134.40903
[19] A. S. Parhomenko, Über eineindeutige stetige Abbildungen, Mat. Sb. 5 (47) (1939), 197-210. (Russian) MR 1, 221. · JFM 65.0885.02
[20] Jack R. Porter, Minimal first countable spaces, Bull. Austral. Math. Soc. 3 (1970), 55 – 64. · Zbl 0194.54303 · doi:10.1017/S0004972700045640
[21] Jack Porter and John Thomas, On \?-closed and minimal Hausdorff spaces, Trans. Amer. Math. Soc. 138 (1969), 159 – 170. · Zbl 0175.49501
[22] A. Ramanathan, A characterization of maximal-Hausdorff spaces, J. Indian Math. Soc. (N. S.) 11 (1947), 73 – 80. · Zbl 0031.08201
[23] A. Ramanathan, Maximal-Hausdorff spaces, Proc. Indian Acad. Sci., Sect. A. 26 (1947), 31 – 42. · Zbl 0031.08201
[24] A. Ramanathan, Minimal-bicompact spaces, J. Indian Math. Soc. (N.S.) 12 (1948), 40 – 46. · Zbl 0041.51502
[25] C. T. Scarborough and A. H. Stone, Products of nearly compact spaces, Trans. Amer. Math. Soc. 124 (1966), 131 – 147. · Zbl 0151.30001
[26] N. Smythe and C. A. Wilkins, Minimal Hausdorff and maximal compact spaces, J. Austral. Math. Soc. 3 (1963), 167 – 171. · Zbl 0163.17201
[27] R. M. Stephenson Jr., Minimal first countable topologies, Trans. Amer. Math. Soc. 138 (1969), 115 – 127. · Zbl 0175.19702
[28] J. Pelham Thomas, Maximal connected topologies, J. Austral. Math. Soc. 8 (1968), 700 – 705. · Zbl 0165.25302
[29] Wolfgang J. Thron, Topological structures, Holt, Rinehart and Winston, New York-Toronto, Ont.-London, 1966. · Zbl 0137.15402
[30] Hing Tong, Note on minimal bicompact spaces (preliminary report), Bull. Amer. Math. Soc. 54 (1948), 478-479.
[31] P. Urysohn, Sur les classes \( \mathfrak{L}\) de M. Fréchet, Enseignement Math. 25 (1926), 77-83. · JFM 52.0582.03
[32] Paul Urysohn, Über die Mächtigkeit der zusammenhängenden Mengen, Math. Ann. 94 (1925), no. 1, 262 – 295 (German). · JFM 51.0452.05 · doi:10.1007/BF01208659
[33] R. Vaidyanathaswamy, Set topology, Chelsea, New York, 1947. · Zbl 0031.41602
[34] Giovanni Viglino, A co-topological application to minimal spaces, Pacific J. Math. 27 (1968), 197 – 200. · Zbl 0174.54003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.