×

zbMATH — the first resource for mathematics

Measurable dependence of convex sets and functions on parameters. (English) Zbl 0202.33804

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aumann, R.J, Integrals of set-valued functions, J. math. anal. appl., 12, 1-12, (1965) · Zbl 0163.06301
[2] Castaing, C, Sur LES multi-applications measurables, () · Zbl 0155.10202
[3] Castaing, C, Sur LES multi-applications measurables, Rev. franc. inform. rech. operat., 1, 3-34, (1967)
[4] Debreu, G, Integration of correspondences, (), 351-372, Part 1 · Zbl 0211.52803
[5] Kuratowski, K; Ryll-Nardzewski, C, A general theorem on selectors, Bull. Polish acad. sci., 13, 273-411, (1965) · Zbl 0152.21403
[6] Moreau, J.J, Proximité et dualité dans un espace hilbertien, Bull. soc. math. France, 93, 273-299, (1965) · Zbl 0136.12101
[7] Olech, C, A note concerning set valued measurable functions, Bull. Polish acad. sci., 13, 317-321, (1965) · Zbl 0145.28302
[8] Plis, A, Remark on measurable set valued functions, Bull. Polish acad. sci., 9, 857-859, (1961) · Zbl 0101.04303
[9] Rockafellar, R.T, Integrals which are convex functionals, Pacific J. math., 24, 525-539, (1968) · Zbl 0159.43804
[10] Rockafellar, R.T, Convex analysis, (1969), Princeton Univ. Press · Zbl 0202.33804
[11] von Neumann, J, On rings of operators. reduction theory, Ann. math., 50, 401-485, (1949) · Zbl 0034.06102
[12] Castaing, C, Proximité et mesurabilité, (), No. 1 · Zbl 0239.49006
[13] Himmelberg, C.J; Jacobs, M.Q; Van Vleck, F.S, Measurable multifunctions, selectors, and Filippov’s implicit functions lemma, J. math. anal. appl., 25, 276-284, (1969) · Zbl 0179.08303
[14] {\scC. J. Himmelberg and F. S. Van Vleck}. Some remarks on Filippov’s lemma. In “Proceedings of the U.S.-Japan Seminar on Differential and Functional Equations” (W. A. Harris and Y. Sibuya, eds.), pp. 455-462. · Zbl 0189.15902
[15] {\scC. J. Himmelberg and F. S. Van Vleck}. Some selection theorems for measurable functions. Can. J. Math. (to appear). · Zbl 0202.33803
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.