Produkte von Kongruenzklassengeometrien universeller Algebren. (German) Zbl 0203.22902


51A25 Algebraization in linear incidence geometry
08A99 Algebraic structures
Full Text: DOI EuDML


[1] Artin, E.: Geometric algebra. New York: Interscience Publishers Inc. 1957. · Zbl 0077.02101
[2] Birkhoff, G.: Lattice theory. Amer. Math. Soc. Publ.25, 2nd Edition 1961. · Zbl 0126.03801
[3] Foster, A. L.: Generalized ?Boolean? theory of universal algebra, I. Math. Z.58, 306-336 (1953). · Zbl 0051.02201
[4] Grätzer, G.: Universal algebra. Toronto-London-Melbourne: D. van. Nostrand 1968.
[5] Hashimoto, J.: Direct, subdirect decompositions and congruence relations. Osaka Math. J.9, 87-112 (1967). · Zbl 0078.01805
[6] Katri?ák, T., Mitschke, A.: Postalgebren und Stonesche Verbände der Ordnungn. Colloquium Math. (erscheint).
[7] Kertész, A.: Vorlesungen über Artinsche Ringe. Budapest: Akadémiai Kiadó 1968.
[8] Lampe, W. A.: On related structures of a universal algebra. PhD-Thesis, Pennsylvania State University 1969.
[9] Mitschke, A.: Postalgebren. Staatsexamensarbeit, Bonn 1970.
[10] Pixley, A. F.: Functionally complete algebras generating distributive and permutable classes. Math. Z.114, 361-372 (1970). · Zbl 0187.28701
[11] P?onka, J.: Diagonal algebras and algebraic independence. Bull. Acad. Polon.12, 729-733 (1964). · Zbl 0133.26802
[12] ?: Diagonal algebras. Fundamenta Math.58, 306-321 (1966).
[13] Schmidt, J.: Emige grundlegende Begriffe und Sätze aus der Theorie der Hüllenoperatoren. Ber math. Tagung, Berlin 1953, 21-48.
[14] Wenzel, G. H.: Note on a subdirect representation of universal algebras. Acta Math. Acad. Sci. Hungar.18, 329-333 (1967). · Zbl 0164.01101
[15] Wille, P.: Kongruenzklassengeometrien. Lecture Notes in Math.113, Berlin-Heidelberg-New York: Springer 1970. · Zbl 0191.51403
[16] Werner, H.: A characterization of functionally complete algebras. Notices Amer. Math. Soc.17, 430 (1970).
[17] ?: Eine Charakterisierung funktional vollständiger Algebren. Arch. der Math.21, 381-385 (1970). · Zbl 0211.32003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.