Toupin, R. A. Saint-Venant’s principle. (English) Zbl 0203.26803 Arch. Ration. Mech. Anal. 18, 83-96 (1965). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 113 Documents PDFBibTeX XMLCite \textit{R. A. Toupin}, Arch. Ration. Mech. Anal. 18, 83--96 (1965; Zbl 0203.26803) Full Text: DOI References: [1] Saint-Venant, A.-J.-C. Barré de, Mémoire sur la torsion des prismes, avec des considérations sur leur flexion ... (Read June 13, 1853). Mém. Divers Savants 14, 233-560 (1855). Also issued separately: De la Torsion des Prismes ... Paris: Imprimérie Impériale (1855). [2] Love, A. E. H., A Treatise on the Mathematical Theory of Elasticity, Fourth Edition. Cambridge: The University Press 1927. · JFM 53.0752.01 [3] Diaz, J. B., & L. E. Payne, Mean Value Theorems in the Theory of Elasticity. Proceedings of the Third U.S. National Congress of Applied Mechanics, 293-303 (1958). [4] Filon, L. N. G., On the Elastic Equilibrium of Circular Cylinders under Certain Practical Systems of Load. Phil. Trans. Roy. Soc. (Ser. A) 198, 147 (1902). · JFM 33.0822.02 · doi:10.1098/rsta.1902.0004 [5] [5]Bramble, J. H., & L. E. Payne, Some Inequalities for Vector Functions with Applications in Elasticity. Arch. Rational Mech. Anal. 11, 16-26 (1962). · Zbl 0109.16806 · doi:10.1007/BF00253925 [6] Boussinesq, M. J., Applications des potentiels à l’étude de l’équilibre et du mouvement des solides élastiques. Paris: Gauthier-Villars 1885. · JFM 18.0932.01 [7] von Mises, R., On Saint-Venant’s Principle. Bull. Amer. Math. Soc. 51, 555-562 (1945). · Zbl 0063.04019 · doi:10.1090/S0002-9904-1945-08394-3 [8] Sternberg, E., On Saint-Venant’s Principle. Quart. of Appl. Math. 11, 393-402 (1954). · Zbl 0057.40004 · doi:10.1090/qam/58414 [9] Zanaboni, O., Dimostrazione generale del Principio del de Saint-Venant. Atti. Acc. Naz. Lincei 25, 117-120 (1937). · JFM 63.0742.02 [10] Dou, A., On the Principle of Saint-Venant. Mathematics Research Center, U.S. Army, The University of Wisconsin, Tech. Report No. 472 (1964). [11] Gould, S., Variational Methods for Eigenvalue Problems. Math. Expositions 10, Toronto (1957). · Zbl 0077.09603 [12] Truesdell, C., & R. Toupin, The Classical Field Theories. Handbuch der Physik, Vol. III/1. Berlin-Göttingen-Heidelberg: Springer 1960. · doi:10.1007/978-3-642-45943-6_2 [13] Truesdell, C., The Rational Mechanics of Materials—Past, Present, Future. Appl. Mech. Rev. 12, 75-80 (1959). This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.