×

On amicable and sociable numbers. (English) Zbl 0203.35201


PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Edward Brind Escott, Amicable numbers, Scripta Math. 12 (1946), 61 – 72. · Zbl 0060.08708
[2] P. Poulet, ”43 new couples of amicable numbers,” Scripta Math., v. 14. 1948. p. 77. · Zbl 0032.39701
[3] Mariano García, New amicable pairs, Scripta Math. 23 (1957), 167 – 171. · Zbl 0088.03605
[4] Elvin J. Lee, Amicable numbers and the bilinear diophantine equation, Math. Comp. 22 (1968), 181 – 187. · Zbl 0157.08702
[5] E. J. Lee, ”The discovery of amicable numbers,” J. Recreational Math. (To appear.) · Zbl 0362.10005
[6] J. Alanen, O. Ore, and J. Stemple, Systematic computations on amicable numbers, Math. Comp. 21 (1967), 242 – 245. · Zbl 0164.04601
[7] Paul Bratley and John McKay, More amicable numbers, Math. Comp. 22 (1968), 677 – 678. · Zbl 0164.04602
[8] P. Poulet, L’intermédiaire des math., v. 25, 1918, pp. 100-101.
[9] G. A. Paxson, Annapolis Meeting of the Mathematical Association of America, May 5th 1956.
[10] L. E. Dickson, ”Theorems and tables on the sum of the divisors of a number,” Quart. J. Math., v. 44. 1913, pp. 264-296.
[11] P. Erdös, On amicable numbers, Publ. Math. Debrecen 4 (1955), 108 – 111. · Zbl 0065.02706
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.