×

Path behavior of processes with stationary independent increments. (English) Zbl 0203.50103


PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Blumenthal, R. M.: An extended Markov property. Trans. Amer. math. Soc. 85, 52-72 (1957). · Zbl 0084.13602
[2] ?, Getoor, R. K.: Some theorems on stable processes. Trans. Amer. math. Soc. 95, 263-273 (1960). · Zbl 0107.12401
[3] ? ?: Sample functions of stochastic processes with stationary independent increments. J. Math. Mech. 10, 493-516 (1961). · Zbl 0097.33703
[4] Bochner, S.: Harmonic analysis and the theory of probability. Berkeley: Univ. of Calif. Press 1955. · Zbl 0068.11702
[5] Burkholder, D. L.: Maximal inequalities as necessary conditions for almost everywhere convergence. Z. Wahrscheinlichkeitstheorie verw. Geb. 3, 75-88 (1964). · Zbl 0134.14602
[6] Chung, K.L.: A course in probability theory. New York: Harcourt, Brace and World 1968. · Zbl 0159.45701
[7] Cogburn, R., Tucker, H. G.: A limit theorem for a function of the increments of a decomposable process. Trans. Amer. math. Soc. 99, 278-284 (1961). · Zbl 0107.12302
[8] Doob, J. L.: Stochastic processes. New York: Wiley 1953. · Zbl 0053.26802
[9] Feller, W.: An introduction to probability theory and its applications, vol. II. New York: Wiley 1966. · Zbl 0138.10207
[10] Fristedt, B. E.: Sample function behavior of increasing processes with stationary, independent increments. Pacific J. Math. 21, 21-33 (1967). · Zbl 0189.50802
[11] ?: Variation of symmetric, one-dimensional stochastic processes with stationary, independent increments. Illinois J. Math. 13, 717-721 (1969). · Zbl 0184.40402
[12] Khintchine, A.: Sur la croissance locale des processus stochastiques homogènes à accroissements indépendantes. Izvestja Akad. Nauk, SSSR, Ser. math. 3, 487-508 (1939). · JFM 65.1342.02
[13] Loève, M.: Probability theory. New York: Van Nostrand 1963. · Zbl 0095.12201
[14] Millar, P. W.: Martingales with independent increments. Ann. math. Statistics 40, 1033-1041 (1969). · Zbl 0214.43901
[15] Stein, E. M.: On limits of sequences of operators. Ann. of Math. II Ser. 74, 140-170 (1961). · Zbl 0103.08903
[16] Takano, K.: On some limit Theorems of probability distributions. Ann. Inst. statist. Math. 6, 37-113 (1954). · Zbl 0058.12202
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.