Fixpunktsätze vom Krasnoselski-Typ. (German) Zbl 0204.45802

Full Text: DOI EuDML


[1] Browder, F. E.: Nonexpansive nonlinear operators in a Banach space. Proc. Nat. Acad. Sci. USA54, 1041-1043 (1965). · Zbl 0128.35801 · doi:10.1073/pnas.54.4.1041
[2] Darbo, G.: Punti uniti in trasformazioni a condominio non compatto. Rend. Sem. Mat. Univ. Padova24, 84-92 (1955). · Zbl 0064.35704
[3] Edmunds, D. E.: Remarks on nonlinear functional equations. Math. Ann.174, 233-239 (1967). · Zbl 0152.34701 · doi:10.1007/BF01360721
[4] Krasnoselski, M. A.: Zwei Bemerkungen über die Methode der sukzessiven Approximationen. Uspehi Mat. Nauk10, No 1 (63), 123-127 (1955). · Zbl 0064.12002
[5] ?, Kachurovski, R. I.: On a fixed-point theorem for operators in Hilbert space. Function analiz i prilozen1, 93-94 (1967).
[6] ?, Zabreiko, P. P.: A method for producing new fixed-point theorems. Dokl. Akad. Nauk SSSR176, 1233-1235 (1967).
[7] Reinermann, J.: Über das Verfahren der sukzessiven Approximation in der Fixpunkttheorie kontrahierender Abbildungen. Habilitationsschrift, Aachen 1970.
[8] Reinermann, J.: Fortsetzung stetiger Abbildungen in Banach-Räumen und Anwendungen in der Fixpunkttheorie (in Vorbereitung). · Zbl 0239.47037
[9] Sadovski, B. N.: A fixed-point principle. Function analiz i prilozen1, 74-76 (1967). · Zbl 0165.49102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.