×

zbMATH — the first resource for mathematics

Une propriété topologique des espaces \(q\)-convexes. (French) Zbl 0204.56501

PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] ANDREOTTI (A.) et GRAUERT (H.) . - Théorèmes de finitude pour la cohomologie des espaces complexes , Bull. Soc. math. France, t. 90, 1962 , p. 193-259. Numdam | MR 27 #343 | Zbl 0106.05501 · Zbl 0106.05501
[2] BLOOM (T.) and HERRERA (M.) . - De Rham cohomology of an analytic space , Invent. Math., Berlin, t. 7, 1969 , p. 275-296. MR 40 #1601 | Zbl 0175.37301 · Zbl 0175.37301
[3] FERRARI (A.) . - Cohomology and holomorphic differential forms on complex analytic spaces , Ann. Scuola Norm. Sup. Pisa, t. 24, 1970 , p. 65-77. Numdam | MR 43 #570 | Zbl 0191.37902 · Zbl 0191.37902
[4] GREENBERG (M.) . - Lectures on algebraic topology . - New York, Amsterdam W. A. Benjamin, 1967 (Mathematics Lecture Notes). MR 35 #6137 | Zbl 0169.54403 · Zbl 0169.54403
[5] NARASIMHAN (R.) . - On the homology groups of Stein spaces , Invent. Math., Berlin, t. 2, 1967 , p. 377-385. MR 35 #7356 | Zbl 0148.32202 · Zbl 0148.32202
[6] NARASIMHAN (R.) . - The Levi problem for complex spaces , Math. Annalen, t. 142, 1961 , p. 355-365 ; t. 146, 1962 , p. 195-216. Zbl 0106.28603 · Zbl 0106.28603
[7] REIFFEN (H. J.) . - Riemannsche Hebbarkeitssätze für Cohomologieklassen mit kompakten Träger , Math. Annalen. t. 164, 1966 , p. 272-279. MR 33 #5942 | Zbl 0142.41102 · Zbl 0142.41102
[8] SORANI (G.) . - Omologia degli spazi q-pseudoconvessi , Ann. Scuola Norm. Sup. Pisa, t. 16, 1962 , p. 299-304. Numdam | MR 28 #246 | Zbl 0192.18403 · Zbl 0192.18403
[9] SORANI (G.) . - Homologie des q-paires de Runge , Ann. Scuola Norm. Sup. Pisa, t. 17, 1963 , p. 319-332. Numdam | MR 29 #2432 | Zbl 0126.09701 · Zbl 0126.09701
[10] VILLANI (V.) . - Su alcune propriétà coomologiche dei fasci coerenti su uno spazio complesso , Rend. Sem. mat. Univ. Padova, t. 35, 1964 , p. 47-55. Numdam | MR 32 #2617 | Zbl 0154.33602 · Zbl 0154.33602
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.