×

zbMATH — the first resource for mathematics

Weakly wandering vectors and weakly independent partitions. (English) Zbl 0205.13903

MSC:
47A10 Spectrum, resolvent
47A70 (Generalized) eigenfunction expansions of linear operators; rigged Hilbert spaces
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Yael Naim Dowker, On measurable transformations in finite measure spaces, Ann. of Math. (2) 62 (1955), 504 – 516. · Zbl 0065.28701 · doi:10.2307/1970076 · doi.org
[2] Arshag B. Hajian and Shizuo Kakutani, Weakly wandering sets and invariant measures, Trans. Amer. Math. Soc. 110 (1964), 136 – 151. · Zbl 0122.29804
[3] Paul R. Halmos, Shifts on Hilbert spaces, J. Reine Angew. Math. 208 (1961), 102 – 112. · Zbl 0107.09802 · doi:10.1515/crll.1961.208.102 · doi.org
[4] A. Hanen and J. Neveu, Atomes conditionnels d’un espace de probabilité, Acta Math. Acad. Sci. Hungar. 17 (1966), 443 – 449 (French). · Zbl 0144.39601 · doi:10.1007/BF01894889 · doi.org
[5] G. Herglotz, Über Potenzreihen mit positivem, reellem Teil im Einheitskreis, S.-B. Sächs. Akad. Wiss. 63 (1911), 501-511. · JFM 42.0438.02
[6] Edwin Hewitt and Karl Stromberg, Real and abstract analysis. A modern treatment of the theory of functions of a real variable, Springer-Verlag, New York, 1965. · Zbl 0137.03202
[7] E. Hopf, Ergodentheorie, Ergebnisse der Mathematik, Band 5, no. 2, Springer-Verlag, Berlin, 1937; reprint, Chelsea, New York, 1948. MR 10, 549. · JFM 63.0786.07
[8] Konrad Jacobs, Neuere Methoden und Ergebnisse der Ergodentheorie, Ergebnisse der Mathematik und ihrer Grenzgebiete. N. F., Heft 29. Springer-Verlag, Berlin-Göttingen-Heidelberg, 1960 (German). · Zbl 0102.32903
[9] S. Kakutani and W. Parry, Infinite measure preserving transformations with ”mixing”, Bull. Amer. Math. Soc. 69 (1963), 752 – 756. · Zbl 0126.31801
[10] U. Krengel and L. Sucheston, On mixing in infinite measure spaces, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 13 (1969), 150 – 164. · Zbl 0176.33804 · doi:10.1007/BF00537021 · doi.org
[11] K. Krickeberg, Recent results on mixing in topological measure spaces, Probability and Information Theory (Proc. Internat. Sympos., McMaster Univ., Hamilton, Ont., 1968) Springer, Berlin, 1969, pp. 178 – 185.
[12] A. G. Kušnirenko, Metric invariants of entropy type, Uspehi Mat. Nauk 22 (1967), no. 5 (137), 57 – 65 (Russian).
[13] V. P. Leonov, The use of the characteristic functional and semi-invariants in the ergodic theory of stationary processes, Soviet Math. Dokl. 1 (1960), 878 – 881. · Zbl 0141.15401
[14] J. Neveu, Théorie ergodique, Lecture Notes, University of Paris, 1966.
[15] -, Atomes conditionnels d’espaces de probabilité et théorie de l’information, Sympos. on Probability Methods in Analysis (Loutraki, 1966), Springer, Berlin, 1967, pp. 256-271. MR 36 #3602.
[16] A. Rényi, On mixing sequences of sets, Acta Math. Acad. Sci. Hungar. 9 (1958), 215 – 228. · Zbl 0089.13201 · doi:10.1007/BF02023873 · doi.org
[17] V. A. Rohlin, On the fundamental ideas of measure theory, Mat. Sbornik N.S. 25(67) (1949), 107 – 150 (Russian).
[18] L. Sucheston, On mixing and the zero-one law, J. Math. Anal. Appl. 6 (1963), 447 – 456. · Zbl 0118.13504 · doi:10.1016/0022-247X(63)90024-6 · doi.org
[19] Louis Sucheston, On existence of finite invariant measures, Math. Z. 86 (1964), 327 – 336. · Zbl 0128.11404 · doi:10.1007/BF01110407 · doi.org
[20] László Zsidó, Conditional expectation and the theorem of Sinaĭ, Stud. Cerc. Mat. 20 (1968), 1045 – 1111 (Romanian, with English summary). · Zbl 0261.28013
[21] James W. England and N. F. G. Martin, On weak mixing metric automorphisms, Bull. Amer. Math. Soc. 74 (1968), 505 – 507. · Zbl 0174.34503
[22] L. K. Jones, A short proof of Sucheston’s characterization of mixing (to appear). · Zbl 0247.28009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.