×

zbMATH — the first resource for mathematics

\(H\)-abgeschlossene Räume als schwach-stetige Bilder kompakter Räume. (German) Zbl 0205.26701

MSC:
54D25 “\(P\)-minimal” and “\(P\)-closed” spaces
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Alexandroff, P.S.: Über stetige Abbildungen kompakter Räume. Math. Ann.96, 555-571 (1926). · JFM 52.0584.03
[2] , u.H. Hopf: Topologie, Berlin: Springer 1935.
[3] , u.P.S. Urysohn: Zur Theorie der topologischen Räume. Math. Ann.92, 258-266 (1924). · JFM 50.0128.06
[4] Alexandroff, P.S., etP.S. Urysohn: Mémoire sur les espaces topologiques compacts. Verh. K. Akademie Amsterdam, Deel XIV. Nr. 1 (1929). · JFM 55.0960.02
[5] Birkhoff, G.: Lattice theory. New York: Amer. Math. Soc. Colloquium Publications, vol. 25, 1948. · Zbl 0033.10103
[6] Flachsmeyer, J.: Topologische Projektivräume. Math. Nachr.26, 57-66 (1963). · Zbl 0136.19103
[7] : Über das System der regulär offenen (abgeschlossenen) Mengen [Russisch]. Doklady Akad, Nauk SSSR156, 32-34 (1964).
[8] : Zur Spektralentwicklung topologischer Räume. Math. Ann.144, 253-274 (1961). · Zbl 0118.17701
[9] Fomin, S.: Extensions of topological spaces. Ann. of Math.44, 471-480 (1943) · Zbl 0061.39601
[10] Iliadis, S.: Absoluta von Hausdorffschen Räumen [Russisch] Doklady Akad. Nauk SSSR149, 22-25 (1963).
[11] Kat?tov, M.: ÜberH-abgeschlossene und bikompakte Räume. Cas. mat. fys.69, 36-49 (1940). · JFM 66.0964.02
[12] : OnH-closed extensions of topological spaces. Cas mat. fys.72, 17-31 (1947).
[13] Parovi?enko, I.: On the weight and power ofH-closed spaces [Russian]. Doklady Akad. Nauk SSSR138, 1295-1297 (1962).
[14] Stone, M.H.: Application of the theory of Boolean rings to general topology. Trans. Amer. Math. Soc.41, 375-481 (1937). · Zbl 0017.13502
[15] Tychonoff, A.: Über die topologische Erweiterung von Räumen. Math. Ann.102, 544-561 (1930). · JFM 55.0963.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.