Field, M. Equivariant dynamical systems. (English) Zbl 0205.28204 Bull. Am. Math. Soc. 76, 1314-1318 (1970). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 12 Documents MSC: 37D15 Morse-Smale systems 57R91 Equivariant algebraic topology of manifolds 37D99 Dynamical systems with hyperbolic behavior PDF BibTeX XML Cite \textit{M. Field}, Bull. Am. Math. Soc. 76, 1314--1318 (1970; Zbl 0205.28204) Full Text: DOI References: [1] S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747 – 817. · Zbl 0202.55202 [2] Arthur G. Wasserman, Equivariant differential topology, Topology 8 (1969), 127 – 150. · Zbl 0215.24702 [3] Richard S. Palais, Foundations of global non-linear analysis, W. A. Benjamin, Inc., New York-Amsterdam, 1968. · Zbl 0164.11102 [4] M. W. Hirsch, C. C. Pugh, and M. Shub, Invariant manifolds, Lecture Notes in Mathematics, Vol. 583, Springer-Verlag, Berlin-New York, 1977. · Zbl 0226.58009 [5] Armand Borel, Seminar on transformation groups, With contributions by G. Bredon, E. E. Floyd, D. Montgomery, R. Palais. Annals of Mathematics Studies, No. 46, Princeton University Press, Princeton, N.J., 1960. · Zbl 0091.37202 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.