zbMATH — the first resource for mathematics

On a convolution of L-series. (English) Zbl 0205.50902

11F66 Langlands \(L\)-functions; one variable Dirichlet series and functional equations
14G10 Zeta functions and related questions in algebraic geometry (e.g., Birch-Swinnerton-Dyer conjecture)
11G40 \(L\)-functions of varieties over global fields; Birch-Swinnerton-Dyer conjecture
Full Text: DOI EuDML
[1] Hecke, E.: Mathematische Werke. Göttingen: Vandenhoeck und Ruprecht 1959.
[2] Lang, S.: Algebraic numbers. New York: Addison-Wesley 1964. · Zbl 0211.38501
[3] Ogg, A.: On the eigenvalues of Hecke operators. Math. Ann.179, 101-108 (1969). · Zbl 0169.10102 · doi:10.1007/BF01350121
[4] Ogg, A.: Functional equations of modular forms (to appear). · Zbl 0191.38102
[5] ?: Elliptic curves and wild ramification. Amer. Jour.89, 1-21 (1967). · Zbl 0147.39803 · doi:10.2307/2373092
[6] ?: Abelian curves of small conductor. Crelles Jour.226, 204-215 (1967). · Zbl 0163.15404
[7] Ogg, A.: On the reduction of elliptic curves (in preparation). · Zbl 0216.05602
[8] Petersson, H.: Konstruktion der sämtlichen Lösungen einer Riemannschen Funktionalgleichung durch Dirichlet-Reihen mit Eulerscher Produktentwicklung, I, II, III. Math. Ann.116, 401-412 (1939), and117, 39-64 and 277-300 (1940-1941). · JFM 65.0355.02 · doi:10.1007/BF01597364
[9] Rankin, R.: Contributions to the theory of Ramanujan’s function ?(n) and similar arithmetical functions II. Proc. Camb. Phil. Soc.35, 357-372 (1939). · Zbl 0021.39202 · doi:10.1017/S0305004100021101
[10] Tate, J.: Algebraic cycles and poles of zeta-functions. Arithmetical algebraic geometry, edited by O. Schilling. 93-110. New York: Harper and Row 1965.
[11] Weil, A.: Über die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen. Math. Ann.168, 149-156 (1967). · Zbl 0158.08601 · doi:10.1007/BF01361551
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.