×

zbMATH — the first resource for mathematics

A class of ergodic transformations having simple spectrum. (English) Zbl 0206.06404

MSC:
28D05 Measure-preserving transformations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] M. A. Akcoglu, R. V. Chacon, and T. Schwartzbauer, Commuting transformations and mixing, Proc. Amer. Math. Soc. 24 (1970), 637 – 642. · Zbl 0197.04001
[2] R. V. Chacon, A geometric construction of measure preserving transformations, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66) Univ. California Press, Berkeley, Calif., 1967, pp. 335 – 360.
[3] R. V. Chacon and T. Schwartzbauer, Commuting point transformations, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 11 (1969), 277 – 287. · Zbl 0165.18903 · doi:10.1007/BF00531651 · doi.org
[4] Nathaniel A. Friedman, Introduction to ergodic theory, Van Nostrand Reinhold Co., New York-Toronto, Ont.-London, 1970. Van Nostrand Reinhold Mathematical Studies, No. 29. · Zbl 0212.40004
[5] Donald Ornstein, A mixing transformation that commutes only with its powers. (to appear).
[6] V. A. Rohlin, Lectures on the entropy theory of transformations with invariant measure, Uspehi Mat. Nauk 22 (1967), no. 5 (137), 3 – 56 (Russian).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.