Trèves, François A new method of proof of the subelliptic estimates. (English) Zbl 0206.11401 Commun. Pure Appl. Math. 24, 71-115 (1971). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 32 Documents MSC: 35B35 Stability in context of PDEs 58J05 Elliptic equations on manifolds, general theory PDF BibTeX XML Cite \textit{F. Trèves}, Commun. Pure Appl. Math. 24, 71--115 (1971; Zbl 0206.11401) Full Text: DOI OpenURL References: [1] Egorov, Soviet Math. Doklady 10 pp 697– (1969) [2] Egorov, Uspekhi Mat. Nauk. 24 pp 235– (1969) [3] Egorov, Doklady Akad. Nauk. USSR 10 pp 1056– (1969) [4] Egorov, Doklady Akad. Nauk. USSR 8 pp 53– (1969) [5] Egorov, Doklady Akad. Nauk. USSR 10 pp 368– (1969) [6] Hörmander, Comm. Pure Appl. Math. 18 pp 501– (1965) [7] Hörmander, Ann. of Math. 23 pp 129– (1966) [8] Hörmander, Proc. Symp. Pure Math. 10 pp 138– (1968) [9] Hörmander, Acta Math. [10] A proof of the Malgrange preparation theorem, to appear. · Zbl 0212.10702 [11] Nirenberg, Comm. Pure Appl. Math. 23 pp 1– (1970) [12] Nirenberg, Comm. Pure Appl. Math. 23 pp 459– (1970) [13] Improving estimates for differential operators in two independent variables, mimeograph. [14] Treves, Amer. Journ. Math. pp 645– (1961) [15] Treves, Amer. J. Math. pp 174– (1970) [16] Treves, Comm. Pure Appl. Math. 23 pp 637– (1970) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.