Complexe dualisant et théorèmes de dualité en géométrie analytique complexe. (French) Zbl 0206.25006


55M05 Duality in algebraic topology
32C18 Topology of analytic spaces
32C37 Duality theorems for analytic spaces
Full Text: DOI Numdam EuDML


[1] A. Andreotti etH. Grauert, Théorèmes de finitude pour la cohomologie des espaces complexes,Bull. Soc. Math. France,90 (1962), 193–259. · Zbl 0106.05501
[2] H. Bass, On the ubiquity of Gorenstein rings,Math. Zeitschrift,82 (1963), 8–28. · Zbl 0112.26604
[3] G. E. Bredon,Sheaf Theory, McGraw-Hill, 1967, 176.
[4] P. Cartier, Les groupes Exts(A, B),Séminaire A. Grothendieck, 1956–1957 (exposé no 3).
[5] J. Frisch, Points de platitude d’un morphisme d’espaces analytiques complexes,Inventiones Math.,4 (1967), 118. · Zbl 0167.06803
[6] A. Grothendieck,Espaces vectoriels topologiques, São Paulo, 1964. · Zbl 0316.46001
[7] R. Hartshorne, Residues and Duality,Lecture Notes in Mathematics,20, Springer Verlag, 1966.
[8] R. Hartshorne, Local Cohomology,Lecture Notes in Mathematics,41, Springer Verlag, 1967.
[9] B. Malgrange, Faisceaux sur les variétés analytiques réelles,Bull. Soc. Math. France,85 (1957). · Zbl 0079.39201
[10] B. Malgrange, Systèmes différentiels à coefficients constants,Séminaire Bourbaki, t. 15, 1962–1963, no 246.
[11] J.-P. Serre, Un théorème de dualité,Comm. Math. Helv.,29 (1955), 9–26. · Zbl 0067.16101
[12] J.-P. Serre,Groupes algébriques et corps de classes, Paris, Hermann, 1959. · Zbl 0097.35604
[13] Y. T. Siu, Analytic sheaf cohomology groups of dimensionn ofn-dimensional complex spaces,Trans A.M.S.,143 (1969).
[14] K. Suominen, Duality for coherent sheaves on analytic manifolds,Ann. Acad. Scient. Fennicae, Helsinki, 1968. · Zbl 0185.15205
[15] F. Trèves,Topological vector spaces, distributions and kernels, New York, Academic Press, 1967.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.