Simple automata. (English) Zbl 0206.28804


68Q45 Formal languages and automata
Full Text: EuDML


[1] Barnes B.: Groups of automorphisms and sets of equivalence classes of input for automata. J. ACM 12 (Oct. 1965), 561-565. · Zbl 0199.04004 · doi:10.1145/321296.321306
[2] Fleck A. C.: Isomorphism groups of automata. J. ACM 9 (Oct. 1962), 469-476. · Zbl 0237.94019 · doi:10.1145/321138.321144
[3] Hartmanis G., Stearns R. E.: Algebraic structure theory of sequential machines. Prentice-Hall, Englewood Cliffs, N. J. 1966. · Zbl 0154.41701
[4] Weeg G. P.: The structure of an automaton and its operation-preserving transformation group. J. ACM 9 (July 1962), 345-349. · Zbl 0137.25004 · doi:10.1145/321127.321131
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.