Ein lexikographischer Suchalgorithmus zur Lösung allgemeiner ganzzahliger Programmierungsaufgaben. Nachtrag. (German) Zbl 0206.48805


90C10 Integer programming
90C11 Mixed integer programming


Zbl 0172.43905
Full Text: DOI


[1] Brauer, K. M.: Binäre Optimierung (Dissertation). Univ. des Saarlandes. Saarbrücken 1968.
[2] Freeman, R. J.: Computational Experience with a ”Balasian” Integer Programming. Operations Research,14, 1966, p. 935–941.
[3] Geoffrion, A. M.: An Improved Implicite Enumeration Approach for Integer Programming. Rand Memorandum RM-5644-PR, Juni 1968.
[4] Haldi, J.: Twenty-five Integer Programming Test Problems. Working Paper no. 43. Graduate School of Business. Stanford University, 1964.
[5] —- undL. M. Isaacson: A Computer Code for Integer Solutions to Linear Programs. Operations Research,13, 1965, p. 946–956, SHARE Distribution Number 3335, SC LIP 1.
[6] Keydata Corporation: Computer Characteristics Review (Adams Quarterly). Vol. 9, no. 1, April 1969.
[7] Korte, B., W. Krelle undW. Oberhofer: Ein lexikographischer Suchalgorithmus zur Lösung all-gemeiner ganzzahliger Programmierungsaufgaben. Unternehmensforschung,13, 1969, Teil I, p. 73–98, Teil II, p. 171–192. · Zbl 0172.43905
[8] Krolak, P. D.: Computational Results of an Integer Programming Algorithm. Operations Research,17, 1969, p. 743–749. · Zbl 0176.49903
[9] Lemke, C. E. andK. Spielberg: Direct Search Algorithms for Zero-One and Mixed-Integer Programming. Operations Research,15, 1967, p. 892–914. · Zbl 0168.18201
[10] Levitan, R. E.: Integer Programming 3, 7090, IPM 3 SHARE Distribution Number 1190, September 1961.
[11] Mears, W. J. andG. S. Dawkins: Comparison of Integer Programming Algorithms. Paper presented at the 1968 Joint National Meeting of ORSA and TIMS at San Francisco, May 1–3, 1968, Huston, 1968.
[12] Trauth, C. A. andR. E. Woolsey: Integer Linear Programming: A Study in Computational Efficiency. Management Science,15, 1969, p. 481–493. · Zbl 0172.22302
[13] Woilers, S.: Implicit Enumeration Algorithms for Discrete Optimization Problems. Ph.D. Dissertation, Department of Industrial Engineering, Stanford University, May 1967.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.