×

zbMATH — the first resource for mathematics

Classification of the finite nonlinear primitive Lie algebras. (English) Zbl 0207.34201

MSC:
17B05 Structure theory for Lie algebras and superalgebras
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Shôrô Araki, On root systems and an infinitesimal classification of irreducible symmetric spaces, J. Math. Osaka City Univ. 13 (1962), 1 – 34. · Zbl 0123.03002
[2] E. Cartan, Les groups de transformations continus, infinis, simples, Oeuvres Complètes. Partie II, Vol. 2, Gau thier-Villars, Paris, 1953, pp. 857-925.
[3] M. Kuranishi, The classification of complex simple continuous transitive infinite pseudogroups according to E. Cartan, Mimeographed note, Princeton Univ., Princeton, N. J., 1961.
[4] Shoshichi Kobayashi and Tadashi Nagano, On filtered Lie algebras and geometric structures. I, J. Math. Mech. 13 (1964), 875 – 907. · Zbl 0142.19504
[5] Shoshichi Kobayashi and Tadashi Nagano, On filtered Lie algebras and geometric structures. II, J. Math. Mech. 14 (1965), 513 – 521. · Zbl 0136.17805
[6] Shoshichi Kobayashi and Tadashi Nagano, On filtered Lie algebras and geometric structures. IV, J. Math. Mech. 15 (1966), 163 – 175. · Zbl 0196.30805
[7] Hideya Matsumoto, Quelques remarques sur les groupes de Lie algébriques réels, J. Math. Soc. Japan 16 (1964), 419 – 446 (French). · Zbl 0133.28706 · doi:10.2969/jmsj/01640419 · doi.org
[8] V. V. Morozov, Sur les sous-groupes maximaux non semi-simples des groupes simples, Doctoral Dissertation, Univ. of Kazan, USSR, 1943.
[9] Calvin C. Moore, Compactifications of symmetric spaces, Amer. J. Math. 86 (1964), 201 – 218. · Zbl 0156.03202 · doi:10.2307/2373040 · doi.org
[10] G. D. Mostow, On maximal subgroups of real Lie groups, Ann. of Math. (2) 74 (1961), 503 – 517. · Zbl 0109.02301 · doi:10.2307/1970295 · doi.org
[11] Séminaire Bourbaki, Sous-algèbre des algèbres de Lie semi-simples, by J. Tits, Exposé 119, 1955.
[12] I. M. Singer and Shlomo Sternberg, The infinite groups of Lie and Cartan. I. The transitive groups, J. Analyse Math. 15 (1965), 1 – 114. · Zbl 0277.58008 · doi:10.1007/BF02787690 · doi.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.