×

zbMATH — the first resource for mathematics

Planning under uncertainty as GOLOG programs. (English) Zbl 1105.68334
Summary: A number of logical languages have been proposed to represent the dynamics of the world. Among these languages, the Situation Calculus (McCarthy and Hayes 1969) has gained great popularity. The GOLOG programming language (Levesque et al. 1997, Giacomo et al. 2000) has been proposed as a high-level agent programming language whose semantics is based on the Situation Calculus. For efficiency reasons, high-level agent programming privileges programs over plans; therefore, GOLOG programs do not consider planning. This article presents algorithms that generate conditional GOLOG programs in a Situation Calculus extended with uncertainty of the effects of actions and complete observability of the world. Planning for contingencies is accomplished through two kinds of plan refinement techniques. The refinement process successively increments the probability of achievement of candidate plans. Plans with loops are generated under certain conditions.
MSC:
68N19 Other programming paradigms (object-oriented, sequential, concurrent, automatic, etc.)
68T40 Artificial intelligence for robotics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Allen J.F., In Proceedings of the Ninth International Joint Conference on Artificial Intelligence (IJCAI-85) pp pp. 528–531– (1985)
[2] DOI: 10.1016/S0004-3702(99)00071-5 · Zbl 0939.68827 · doi:10.1016/S0004-3702(99)00071-5
[3] Baier J., Modeling Agents under Uncertainty in the Situation Calculus. (2000)
[4] Baier J., 10th European Summer School in Logic, Language and Information (1998)
[5] DOI: 10.1016/S0004-3702(96)00047-1 · Zbl 1017.68533 · doi:10.1016/S0004-3702(96)00047-1
[6] Blum A., In 5th European Conference on Planning (ECP’99) pp pp. 319–332– (1999)
[7] Blythe J. 1998 Planning under uncertainty in dynamic domains PhD thesis Carnegie Mellon University
[8] Boutilier C., Journal of AI Research (JAIR) 11 pp 1– (1999)
[9] Boutilier C., Proceedings of the Seventeenth National Conference on Artificial Intelligence (AAAI-2000) (2000)
[10] Burgurd W., Proceedings of the Fifteenth National Conference on Artificial Intelligence (AAAAI’98) pp pp. 11–18– (1998)
[11] DOI: 10.1016/0004-3702(94)90081-7 · Zbl 0821.68065 · doi:10.1016/0004-3702(94)90081-7
[12] Draper D., Proceedings of the Second Conference on AI Planning Systems pp pp. 31–36– (1994)
[13] DOI: 10.1016/0004-3702(71)90010-5 · Zbl 0234.68036 · doi:10.1016/0004-3702(71)90010-5
[14] Finzi A., Proceedings of the Seventeenth National Conference on Artificial Intelligence (AAAI-2000) pp pp. 196–203– (2000)
[15] DOI: 10.1016/S0004-3702(00)00031-X · Zbl 0948.68175 · doi:10.1016/S0004-3702(00)00031-X
[16] Green C. C., Proceedings of the First International Joint Conference on Artificial Intelligence (IJCAI-69) pp pp. 219–239– (1969)
[17] Grosskreutz H., 24th German/9th Austrian Conference on Artifical Intelligence KI-2001 (2001)
[18] DOI: 10.1016/S0004-3702(01)00106-0 · Zbl 0971.68036 · doi:10.1016/S0004-3702(01)00106-0
[19] DOI: 10.1007/BF03037383 · Zbl 1356.68221 · doi:10.1007/BF03037383
[20] DOI: 10.1016/0004-3702(94)00087-H · doi:10.1016/0004-3702(94)00087-H
[21] Lespérance Y., Reactivity in a Logic-Based Robot Programming Framework. (1999) · Zbl 0957.93058
[22] DOI: 10.1016/S0743-1066(96)00121-5 · Zbl 0880.68008 · doi:10.1016/S0743-1066(96)00121-5
[23] Lin F., In Working Notes of the 4th International Workshop on Nonmonotonic Reasoning pp pp. 133–138– (1992)
[24] McCarthy J., Machine Intelligence 4 pp pp. 463–502– (1969) · Zbl 0226.68044
[25] DOI: 10.1207/s15516709cog0602_1 · doi:10.1207/s15516709cog0602_1
[26] Peot M. A., Proceedings of the First International Conference on Artificial Intelligence Planning Systems pp pp. 189–197– (1992)
[27] DOI: 10.1111/0824-7935.00056 · doi:10.1111/0824-7935.00056
[28] DOI: 10.1142/S0218488500000101 · Zbl 1113.68532 · doi:10.1142/S0218488500000101
[29] DOI: 10.1145/316542.316545 · Zbl 1065.68627 · doi:10.1145/316542.316545
[30] Pollock J. L., Proceedings of the AIPS2000 Workshop on Decision-Theoretic Planning (2000)
[31] Pollock J. L. 2002 Some logical conundrums from decision-theoretic contingency planning Available online:http://oscarhome.soc-sci.arizona.edu/ftp/PAPERS/DT%20Contingency%20Planning.pdf.draft
[32] Pryor L., Journal of AI Research (JAIR) 4 pp 287– (1996)
[33] Reiter R. 1991The Frame Problem in the Situation Calculus: A Simple Solution (sometimes) and a completeness result for goal regressionArtificial Intelligence and Mathematical Theory of Computation: Papers in Honor of John McCarthy San Diego CA Academic Press pp. 359–380 · Zbl 0755.68124
[34] Reiter R., Principles of Knowledge Representation and Reasoning: Proceedings of the Fifth International Conference (KR’96) (1996)
[35] Reiter R., Knowledge in Action: Logical Foundations for Describing and Implementing Dynamical Systems (2001) · Zbl 1018.03022
[36] Ruman S., GOLOG as an Agent Programming Language: Experiments in Developing Banking Applications (1996)
[37] Sandewall E., Electronic Transactions on Artificial Intelligence 3 (1998)
[38] Thielscher M., Linköping Electronic Articles in Computer and Information Science 3 (1998)
[39] DOI: 10.1080/09528139508953801 · Zbl 0939.68830 · doi:10.1080/09528139508953801
[40] Warren D., Proceedings of the Summer Conference of the Society for Artificial Intelligence and the Simulation of Behaviour (AISB-76) pp pp. 344–354– (1976)
[41] Weld D. S., 15th National Conference on Artificial Intelligence pp pp. 897–904– (1998)
[42] Wooldridge M., Introduction to Multiagent Systems (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.