×

Behavior of biharmonic functions on Wiener’s and Royden’s compactifications. (English) Zbl 0208.13703


MSC:

31A30 Biharmonic, polyharmonic functions and equations, Poisson’s equation in two dimensions
54D35 Extensions of spaces (compactifications, supercompactifications, completions, etc.)
31B30 Biharmonic and polyharmonic equations and functions in higher dimensions
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML

References:

[1] S. BERGMAN and M. SCHIFFER, Kernel functions and elliptic differential equations in mathematical physics, Academic Press, New York, (1953), 432 p. · Zbl 0053.39003
[2] C. CONSTANINESCU and A. CORNEA, Ideale Ränder riemannscher flächen, Springer, (1963), 244 p. · Zbl 0112.30801
[3] P.R. GARABEDIAN, Partial differential equations, Wiley, New York, (1964), 672 p. · Zbl 0124.30501
[4] M. NAKAI and L. SARIO, Biharmonic classification of Riemannian manifolds, (to appear). · Zbl 0253.31011
[5] M. NAKAI and L. SARIO, Quasiharmonic classification of Riemannian manifolds, (to appear). · Zbl 0229.31006
[6] G. DE RHAM, Variétés différentiables, Hermann, Paris, (1960), 196 p. · Zbl 0089.08105
[7] L. SARIO — M. NAKAI, Classification theory of Riemann surfaces, Springer, (1970), 446 p. · Zbl 0199.40603
[8] L. SARIO — M. SCHIFFER — M. GLASNER, The span and principal functions in Riemannian spaces, J. Analyse Math. 15 (1965), 115-134. · Zbl 0136.09603
[9] I.N. VEKUA, New methods for solving elliptic equations, North-Holland, Amsterdam, (1967), 358 p. · Zbl 0146.34301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.