×

zbMATH — the first resource for mathematics

Problème de Cauchy pour le système intégro-différentiel d’Einstein-Liouville. (Cauchy problem for the Einstein-Liouville integro-differential system). (French) Zbl 0208.14303

MSC:
45J05 Integro-ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] G. PICHON, L’équation de boltzman relativiste, séminaire Lichnerowicz, Collège de France (1966).
[2] J. EHLERS, Relativistic kinetic theory, lecture Notes Varenna, (1969).
[3] K. BITCHELER, Cauchy problem for the relativistic boltzman equation, Comm. Maths. Phys. (1967).
[4] Y. BRUHAT, “cauchy problem” in “gravitation, an introduction to current research” L. Witten ed. 1962 (J. Wiley).
[5] J. LERAY, Hyperbolic differential equations, Princteon, I.A.S. (1953).
[6] P. DIONNE, Le problème de Cauchy pour LES équations aux dérivées partielles hyperboliques, Journ. An. Math. (1962).
[7] Y. CHOQUET-BRUHAT and R. GEROCH, “global aspects of the Cauchy problem in general relativity” Comm. Maths. Phys. (1969). et “problème de Cauchy intrinsèque en relativité Générale” C.R.Ac. Sc. t. 269, 746-748, (1969). · Zbl 0182.59901
[8] Y. CHOQUET-BRUHAT, “uniqueness and local stability for the Einstein-Liouville equations” Journ. Math. Phys., (1970). · Zbl 0203.28202
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.