Principal homogeneous spaces and group scheme extensions. (English) Zbl 0208.48401


14L15 Group schemes
14M17 Homogeneous spaces and generalizations
Full Text: DOI


[1] S. U. Chase and Alex Rosenberg, Amitsur cohomology and the Brauer group, Mem. Amer. Math. Soc. No. 52 (1965), 34 – 79. · Zbl 0143.06001
[2] Stephen U. Chase and Moss E. Sweedler, Hopf algebras and Galois theory, Lecture Notes in Mathematics, Vol. 97, Springer-Verlag, Berlin-New York, 1969. · Zbl 0197.01403
[3] M. Demazure, A. Grothendieck et al., Schémas en groupes. Fasc. 1, Exposés 1 à 4, Séminaire de Géometrie Algébrique, 1963, Inst. Hautes Études Sci., Paris, 1963/64. MR 34#7517.
[4] H. Epp, Commutative group schemes, Harrison’s theorem, and Galois extensions, Thesis, Northwestern University, 1966, Dissertation Abstracts 27 B (1967). Abstract #3595.
[5] P. Gabriel, Groupes formels, Schémas en Groupes (Sém. Géométrie Algébrique, Inst. Hautes Études Sci., 1963/64) Inst. Hautes Études Sci., Paris, 1965, pp. 66-152+3 (French).
[6] Roger Godement, Topologie algébrique et théorie des faisceaux, Actualit’es Sci. Ind. No. 1252. Publ. Math. Univ. Strasbourg. No. 13, Hermann, Paris, 1958 (French). · Zbl 0080.16201
[7] A. Grothendieck, Revêtements étales et groupe fondamental. Fase. 2, Exposé 8, Séminaire de Géometrie Algébrique, 1960/61, Inst. Hautes Études Sci., Paris, 1963. MR 36 #179b.
[8] F. Oort, Commutative group schemes, Lecture Notes in Mathematics, vol. 15, Springer-Verlag, Berlin-New York, 1966. · Zbl 0216.05603
[9] Stephen S. Shatz, Principal homogeneous spaces for finite group schemes, Proc. Amer. Math. Soc. 22 (1969), 678 – 680. · Zbl 0186.54701
[10] J. Verdier, Cohomologie étale des schémas, Séminaire de Géométrie Algébrique, 1963, Inst. Hautes Études Sci., Paris, 1963/64.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.