×

The finite element method for non-linear problems. (English) Zbl 0209.17201


MSC:

65J05 General theory of numerical analysis in abstract spaces
65J15 Numerical solutions to equations with nonlinear operators
PDF BibTeX XML Cite
Full Text: EuDML

References:

[1] Birkhoff G., Schultz M. H., Varga R. S.: Piecewise Hermite Interpolation in One and Two Variables with Applications to Partial Differential Equations. Numer. Math. 11, (1968), 232-256. · Zbl 0159.20904
[2] Ciarlet P. G., Schultz M. H., Varga R. S.: Numerical Methods of High-Order Accuracy for Nonlinear Boundary Value Problems, I. One Dimensional Problem. Numer. Math. 9 (1967), 394-430. · Zbl 0155.20403
[3] Ciarlet P. G., Schultz M. H., Varga R. S.: Numerical Methods of High-Order Accuracy for Nonlinear Boundary Value Problems, II. Nonlinear Boundary Conditions. Numer. Math. 11, (1968), 331-345. · Zbl 0176.14901
[4] Качуровский Р. И.: Нелинейные монотонные операторы в Банаховых пространствах. Успехи мат. наук XXIII (1968), 2 (140), 121-168. · Zbl 1171.62301
[5] Михлин С. Г.: Численная реализация вариационных методов. Москва 1966. · Zbl 1155.78304
[6] Йосида К.: Функциональный анализ. Москва 1967. · Zbl 1103.35360
[7] Вайнберг М. М.: Вариационные методы исследования нелинейных операторов. Москва 1956. · Zbl 0995.90522
[8] Zlámal M.: On the Finite Element Method. Numer. Math. 12 (1968), 394-409. · Zbl 0176.16001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.