×

zbMATH — the first resource for mathematics

Countable paracompactness and weak normality properties. (English) Zbl 0209.26904

MSC:
54D20 Noncompact covering properties (paracompact, Lindelöf, etc.)
54D15 Higher separation axioms (completely regular, normal, perfectly or collectionwise normal, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] C. E. Aull, A note on countably paracompact spaces and metrization, Proc. Amer. Math. Soc. 16 (1965), 1316 – 1317. · Zbl 0136.19702
[2] W. W. Comfort and Stelios Negrepontis, Extending continuous functions on \?\times \? to subsets of \?\?\times \?\?, Fund. Math. 59 (1966), 1 – 12. · Zbl 0185.26304
[3] H. H. Corson, Normality in subsets of product spaces, Amer. J. Math. 81 (1959), 785 – 796. · Zbl 0095.37302 · doi:10.2307/2372929 · doi.org
[4] C. H. Dowker, On countably paracompact spaces, Canadian J. Math. 3 (1951), 219 – 224. · Zbl 0042.41007
[5] Leonard Gillman and Meyer Jerison, Rings of continuous functions, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. · Zbl 0093.30001
[6] Edwin Hewitt, On two problems of Urysohn, Ann. of Math. (2) 47 (1946), 503 – 509. · Zbl 0060.39511 · doi:10.2307/1969089 · doi.org
[7] John Mack, On a class of countably paracompact spaces, Proc. Amer. Math. Soc. 16 (1965), 467 – 472. · Zbl 0134.41403
[8] John Mack, Directed covers and paracompact spaces, Canad. J. Math. 19 (1967), 649 – 654. · Zbl 0147.22805 · doi:10.4153/CJM-1967-059-0 · doi.org
[9] John Mack, Product spaces and paracompactness, J. London Math. Soc. (2) 1 (1969), 90 – 94. · Zbl 0177.50803 · doi:10.1112/jlms/s2-1.1.90 · doi.org
[10] -, Countably paracompact spaces on which every real-valued continuous function is constant, Proc. Amer. Math. Soc. (to appear).
[11] J. E. Mack and D. G. Johnson, The Dedekind completion of \?(\?), Pacific J. Math. 20 (1967), 231 – 243. · Zbl 0152.39802
[12] E. Michael, The product of a normal space and a metric space need not be normal, Bull. Amer. Math. Soc. 69 (1963), 375 – 376. · Zbl 0114.38904
[13] E. Michael, A note on closed maps and compact sets, Israel J. Math. 2 (1964), 173 – 176. · Zbl 0136.19303 · doi:10.1007/BF02759940 · doi.org
[14] K. Morita, Paracompactness and product spaces, Fund. Math. 50 (1961/1962), 223 – 236. · Zbl 0099.17401
[15] R. H. Sorgenfrey, On the topological product of paracompact spaces, Bull. Amer. Math. Soc. 53 (1947), 631 – 632. · Zbl 0031.28302
[16] Hisahiro Tamano, On compactifications, J. Math. Kyoto Univ. 1 (1961/1962), 161 – 193. · Zbl 0106.15601
[17] Phillip Zenor, A note on \?-mappings and \?\?-mappings, Proc. Amer. Math. Soc. 23 (1969), 273 – 275. · Zbl 0186.26702
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.