Kister, J. M.; Mann, L. N. Equivariant imbeddings of compact Abelian Lie groups of transformations. (English) Zbl 0209.44104 Math. Ann. 148, 89-93 (1962). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 2 Documents MSC: 43A70 Analysis on specific locally compact and other abelian groups 43A80 Analysis on other specific Lie groups × Cite Format Result Cite Review PDF Full Text: DOI EuDML References: [1] Cartan, H., et al.: Seminar Henri Cartan 1949-50. Paris: Multilith 1950. [2] Copeland Jr., A. H., andJ. de Groot: Linearization of a homeomorphism. Math. Ann.144, 80-92 (1961). · Zbl 0136.19704 · doi:10.1007/BF01396546 [3] Floyd, E. E.: Orbit spaces of finite transformation groups. I. Duke Math. J.20, 563-568 (1953). · Zbl 0053.30101 · doi:10.1215/S0012-7094-53-02056-0 [4] Gleason, A.: Spaces with a compact Lie group of transformations. Proc. Am. Math. Soc.1, 35-43 (1950). · Zbl 0041.36207 · doi:10.1090/S0002-9939-1950-0033830-7 [5] Heller, A.: On equivariant maps of spaces with operators. Ann. Math.55, 223-231 (1952). · Zbl 0046.16601 · doi:10.2307/1969776 [6] Mostow, G. D.: Equivariant embeddings in Euclidean space. Ann. Math.65, 432-446 (1957). · Zbl 0080.16701 · doi:10.2307/1970055 [7] Steenrod, N. E.: The topology of fibre bundles. Princeton Univ. Press 1951. · Zbl 0054.07103 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.