zbMATH — the first resource for mathematics

A comparison of adaptive software for 1D parabolic PDEs. (English) Zbl 1052.65085
Summary: We describe BACOL, a high-order, spatially and temporally adaptive software package for solving systems of one-dimensional parabolic partial differential equations and then compare it with several related software packages. BACOL employs collocation at Gaussian points with a B-spline basis for the spatial discretization. A modification of DASSL is used for the time integration of the resulting differential-algebraic equations. An equidistribution principle is implemented for the spatial mesh adaptation based on a high-quality a posteriori error estimate, and the spatial error tolerance is coupled with the temporal error tolerance to provide a balanced spatial-temporal error control.
We compare BACOL with a related software package, EPDCOL, which uses a fixed-spatial-mesh approach, with several other packages which provide spatial and temporal adaptivity, namely D03PPF, TOMS731, MOVCOL, and with one package, HPNEW, which provides spatial and temporal error control. Numerical results demonstrate that BACOL is robust and that it is generally significantly more efficient than existing solvers for problems having solutions with rapid spatial variation.

65M20 Method of lines for initial value and initial-boundary value problems involving PDEs
65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
35K55 Nonlinear parabolic equations
65L80 Numerical methods for differential-algebraic equations
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
65Y15 Packaged methods for numerical algorithms
Full Text: DOI
[1] Adjerid, S.; Aiffa, M.; Flaherty, J.E., High-order finite element methods for singularly-perturbed elliptic and parabolic problems, SIAM J. appl. math., 55, 520-543, (1995) · Zbl 0827.65097
[2] Adjerid, S.; Flaherty, J.E.; Moore, P.K.; Wang, Y., High-order adaptive methods for parabolic systems, Physica D, 60, 94-111, (1992) · Zbl 0790.65088
[3] Adjerid, S.; Flaherty, J.E.; Wang, Y., A posteriori error estimation with finite element methods of lines for one-dimensional parabolic systems, Numer. math., 65, 1-21, (1993) · Zbl 0791.65070
[4] Ascher, U.; Mattheij, R.M.M.; Russell, R.D., Numerical solution of boundary value problems for ordinary differential equations, (1995), SIAM Philadephia
[5] Berzins, M.; Capon, P.J.; Jimack, P.K., On spatial adaptivity and interpolation when using the method of lines, Appl. numer. math., 26, 117-133, (1998) · Zbl 0890.65102
[6] Berzins, M.; Dew, P.M., Algorithm 690chebyshev polynomial software for elliptic-parabolic systems of pdes, ACM trans. math. software, 17, 178-206, (1991) · Zbl 0900.65271
[7] Berzins, M.; Dew, P.M.; Furzeland, R.M., Developing software for time-dependent problems using the method of lines and differential-algebraic integrators, Appl. numer. math., 5, 375-397, (1989) · Zbl 0679.65071
[8] Berzins, M.; Furzeland, R.M., An adaptive theta method for the solution of stiff and non-stiff differential equations, Appl. numer. math., 9, 1-19, (1992) · Zbl 0751.65043
[9] Bieterman, M.; Babuška, I., The finite element method for parabolic equations. I. A posteriori error estimation, Numer. math., 40, 339-371, (1982) · Zbl 0534.65072
[10] Bieterman, M.; Babuška, I., The finite element method for parabolic equations. II. A posteriori error estimation and adaptive approach, Numer. math., 40, 373-406, (1982) · Zbl 0534.65073
[11] Blom, J.G.; Sanz-Serna, J.M.; Verwer, J.G., On simple moving grid methods for one-dimensional evolutionary partial differential equations, J. comput. phys., 74, 191-213, (1988) · Zbl 0645.65060
[12] Blom, J.G.; Zegeling, P.A., Algorithm 731a moving-grid interface for systems of one-dimensional time-dependent partial differential equations, ACM trans. math. software, 20, 194-214, (1994) · Zbl 0889.65099
[13] Brenan, K.E.; Campbell, S.L.; Petzold, L.R., Numerical solution of initial-value problems in differential-algebraic equations, (1996), SIAM Philadephia · Zbl 0844.65058
[14] Carroll, J., A composite integration scheme for the numerical solution of systems of parabolic PDEs in one space dimension, J. comput. appl. math., 46, 327-343, (1993) · Zbl 0779.65058
[15] D03PPF, NAG Fortran library, Mark 16A. The Numerical Algorithms Group, Ltd. Wilkinson House, Jordan Hill Road, Oxford OX2 8DR, UK.
[16] De Boor, C., Package for calculating with B-splines, SIAM J. numer. anal., 14, 441-472, (1977) · Zbl 0364.65008
[17] De Boor, C., A practical guide to splines, (1978), Springer New York · Zbl 0406.41003
[18] Diaz, J.C.; Fairweather, G.; Keast, P., FORTRAN packages for solving certain almost block diagonal linear systems by modified alternate row and column elimination, ACM trans. math. software, 9, 358-375, (1983) · Zbl 0516.65013
[19] A.C. Hindmarsh, Preliminary documentation of GEARIB: solution of implicit systems of ordinary differential equations with banded Jacobian, Technical Report, UCID-30130, Lawrence Livermore National Laboratory, 1976.
[20] Huang, W.; Russell, R.D., A moving collocation method for solving time dependent partial differential equations, Appl. numer. math., 20, 101-116, (1996) · Zbl 0859.65112
[21] Keast, P.; Muir, P.H., Algorithm 688. epdcola more efficient PDECOL code, ACM trans. math. software, 17, 153-166, (1991) · Zbl 0900.65270
[22] Madsen, N.K.; Sincovec, R.F., General software for partial differential equations, (), 229-242 · Zbl 0426.35005
[23] Madsen, N.K.; Sincovec, R.F., Algorithm 540. PDECOL, general collocation software for partial differential equations, ACM trans. math. software, 5, 326-351, (1979) · Zbl 0426.35005
[24] Miller, K.; Miller, R.N., Moving finite elements. I, SIAM J. numer. anal., 18, 1019-1032, (1981) · Zbl 0518.65082
[25] Moore, P.K., Comparison of adaptive methods for one dimensional parabolic systems, Appl. numer. math., 16, 471-488, (1995) · Zbl 0822.65069
[26] Moore, P.K., Interpolation error-based a posteriori error estimation for two-point boundary value problems and parabolic equations in one space dimension, Numer. math., 90, 149-177, (2001) · Zbl 0997.65103
[27] Petzold, L.R., A description of DASSL: A differential/algebraic system solver, (1982), Sandia Labs Livermore, CA
[28] R. Wang, High order adaptive collocation software for 1-D parabolic PDEs, Ph.D. Thesis, Dalhousie University, 2002, http://www.mathstat.dal.ca/ keast/research/grad_super.html.
[29] R. Wang, P. Keast, P.H. Muir, A high-order global spatially adaptive collocation method for 1-D parabolic PDEs, Appl. Numer. Math. (2003), http://www.mathstat.dal.ca/ keast/research/wang_keast_muir_ANM.pdf. · Zbl 1049.65110
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.