×

\(q\)-factorial series, \(q\)-difference operators and confluence. (Séries de \(q\)-factorielles, opérateurs aux \(q\)-différences et confluence.) (French. English summary) Zbl 1096.33009

Summary: We study some properties of \(q\)-factorial and allied series and show how by confluence they give rise to usual factorial series. We apply this mechanism to the study of difference systems regular at infinity viewed as limits of \(q\)-difference systems.

MSC:

33D15 Basic hypergeometric functions in one variable, \({}_r\phi_s\)
39A10 Additive difference equations
34M30 Asymptotics and summation methods for ordinary differential equations in the complex domain
39A13 Difference equations, scaling (\(q\)-differences)
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML

References:

[1] Adams, C.R., Linear q-difference Equations, Bull. AMS (1931), 361-400. · JFM 57.0534.05
[2] Gasper, G., Elementary Derivations of Summation and Transformation Formulas for q-Series, Fields Inst. Comm.14, p. 55-70 (1997). · Zbl 0873.33013
[3] Gérard, R., Lutz, D.A., Convergent factorial series solutions of singular operator equations, Analysis10, 99-145 (1990). · Zbl 0712.39016
[4] Harris, W.A., Analytic theory of difference equations in Analytic theory of differential equations, , Springer, Berlin197146-58. · Zbl 0232.39001
[5] Jackson, F.H., q-difference Equations, Am. J. Math.32, p. 305-315 (1910). · JFM 41.0502.01
[6] Nörlund, N.-E., Leçons sur les séries d’interpolation , Gauthier-Villars, Paris1926. · JFM 52.0301.04
[7] Postnikov, M., Leçons de géométrie, Groupes et algèbres de Lie, Editions MIR1985. · Zbl 0477.51002
[8] Ramis, J.-P., About the growth of entire functions solutions of linear algebraic q-difference equations, Ann. Fac. Sciences de Toulouse, Série 6, 1, p. 53-94 (1992) · Zbl 0796.39005
[9] Sauloy, J., Systèmes aux q-différences singuliers réguliers : classification, matrice de connexion et monodromie, Ann. Inst. Fourier50, p. 1021-1071 (2000 ). · Zbl 0957.05012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.