×

Numerical methods of high-order accuracy for singular nonlinear boundary value problems. (English) Zbl 0211.19103


MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] Ciarlet, P. G.: AnO(h 2) method for a non-smooth boundary value problem. Acquat. Math.2, 39–49 (1968). · Zbl 0159.11703 · doi:10.1007/BF01833489
[2] —-, Schultz, M. H., Varga, R. S.: Numerical methods of high-order accuracy for nonlinear boundary value problems. I. One dimensional problem. Numer. Math.9, 394–430 (1967). · Zbl 0155.20403 · doi:10.1007/BF02162155
[3] —-: Numerical methods of high-order accuracy for nonlinear two-point boundary value problems. Programmation en Mathématiques Numériques (Proceedings of the International Colloquium C.N.R.S., Besançon, France, Sept. 7–14, 1966), pp. 217–225. Paris: C.N.R.S. 1968.
[4] —-: Numerical methods of high-order accuracy for nonlinear boundary value problems. V. Monotone operator theory. Numer. Math.13, 51–77 (1969) · Zbl 0181.18603 · doi:10.1007/BF02165273
[5] Gusman, Yu. A., Oganesyan, L. A.: Inequalities for the convergence of finite difference schemes for degenerate elliptic equations. Z. Vycisl. Mat. i Mat. Fiz.5, 351–357 (1965)
[6] Jamet, P.: Numerical methods and existence theorems for singular linear boundary-value problems. Doctoral Thesis, University of Wisconsin, 1967 · Zbl 0161.35804
[7] —-: On the convergence of finite-difference approximations to one-dimensional singular boundary-value problems. Numer. Math.14, 355–378 (1970) · Zbl 0179.22103 · doi:10.1007/BF02165591
[8] Neoas, J.: Les Méthodes Directes en Théorie des Equations Elliptiques. Paris: Masson 1967. (351 pp.)
[9] Parter, S. V.: Numerical methods for generalized axially symmetric potentials. J. Soc. Indust. Appl. Math. Ser. B Numer. Anal.2, 500–516 (1965) · Zbl 0137.33402 · doi:10.1137/0702040
[10] Perrin, F. M., Price, H. S., Varga, R. S.: On higher-order numerical methods for nonlinear two-point boundary value problems. Numer. Math.13, 180–198 (1969). · Zbl 0183.44501 · doi:10.1007/BF02163236
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.