×

zbMATH — the first resource for mathematics

Polytopes, graphs, and complexes. (English) Zbl 0211.25001

MSC:
52B11 \(n\)-dimensional polytopes
52B10 Three-dimensional polytopes
52B35 Gale and other diagrams
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Carl B. Allendoerfer and André Weil, The Gauss-Bonnet theorem for Riemannian polyhedra, Trans. Amer. Math. Soc. 53 (1943), 101 – 129. · Zbl 0060.38102
[2] Amos Altshuler, Lattice characterization of convex 3-polytopes and of polygonizations of 2-manifolds, Israel J. Math. 8 (1970), 57 – 64. · Zbl 0195.24104
[3] D. D. Ang, D. E. Daykin, and T. K. Sheng, On Schoenberg’s rational polygon problem, J. Austral. Math. Soc. 9 (1969), 337 – 344. · Zbl 0188.10601
[4] M. L. Balinski, On the graph structure of convex polyhedra in \?-space, Pacific J. Math. 11 (1961), 431 – 434. · Zbl 0103.39602
[5] Thomas Banchoff, Critical points and curvature for embedded polyhedra, J. Differential Geometry 1 (1967), 245 – 256. · Zbl 0164.22903
[6] Robert Bantegnie, Espaces de formes affines, C. R. Acad. Sci. Paris 261 (1965), 2554 – 2556 (French). · Zbl 0138.18704
[7] David Barnette, Trees in polyhedral graphs, Canad. J. Math. 18 (1966), 731 – 736. · Zbl 0141.21401
[8] David Barnette, A necessary condition for \?-polyhedrality, Pacific J. Math. 23 (1967), 435 – 440. · Zbl 0158.42401
[9] David Barnette, On \?-vectors of 3-polytopes, J. Combinatorial Theory 7 (1969), 99 – 103. · Zbl 0179.25902
[10] D. Barnette, A simple 4-dimensional nonfacet, Israel J. Math. 7 (1969), 16 – 20. · Zbl 0174.25404
[11] David Barnette, A completely unambiguous 5-polyhedral graph, J. Combinatorial Theory 9 (1970), 44 – 53. · Zbl 0199.27203
[12] David Barnette, Diagrams and Schlegel diagrams, Combinatorial Structures and their Applications (Proc. Calgary Internat. Conf., Calgary, Alta., Gordon and Breach, New York, 1970, pp. 1 – 4. · Zbl 0245.52005
[13] David W. Barnette, The graphs of polytopes with involutory automorphisms, Israel J. Math. 9 (1971), 290 – 298. · Zbl 0213.22401
[14] David W. Barnette, Projections of 3-polytopes, Israel J. Math. 8 (1970), 304 – 308. · Zbl 0201.24301
[15] David W. Barnette and Branko Grünbaum, On Steinitz’s theorem concerning convex 3-polytopes and on some properties of planar graphs, The Many Facets of Graph Theory (Proc. Conf., Western Mich. Univ., Kalamazoo, Mich., 1968) Springer, Berlin, 1969, pp. 27 – 40. · Zbl 0194.25003
[16] David Barnette and Branko Grünbaum, Preassigning the shape of a face, Pacific J. Math. 32 (1970), 299 – 306. · Zbl 0193.22501
[17] David Barnette and Ernest Jucovič, Hamiltonian circuits on 3-polytopes, J. Combinatorial Theory 9 (1970), 54 – 59. · Zbl 0197.49904
[18] D. Barnette, E. Jucovič, and M. Trenkler, Toroidal maps with prescribed types of vertices and faces, Mathematika 18 (1971), 82 – 90. · Zbl 0222.05102
[19] Christian Berg, Corps convexes et potentiels sphériques, Mat.-Fys. Medd. Danske Vid. Selsk. 37 (1969), no. 6, 64 pp. (1969) (French).
[20] Christian Berg, Abstract Steiner points for convex polytopes, J. London Math. Soc. (2) 4 (1971), 176 – 180. · Zbl 0222.52006
[21] A. J. Bernstein, Maximally connected arrays on the \?-cube, SIAM J. Appl. Math. 15 (1967), 1485 – 1489. · Zbl 0157.26004
[22] A. S. Besicovitch, Rational polygons, Mathematika 6 (1959), 98. · Zbl 0095.35004
[23] Ethan D. Bolker, A class of convex bodies, Trans. Amer. Math. Soc. 145 (1969), 323 – 345. · Zbl 0194.23102
[24] Ethan D. Bolker, Centrally symmetric polytopes, Proc. Twelfth Biennial Sem. Canad. Math. Congr. on Time Series and Stochastic Processes; Convexity and Combinatorics (Vancouver, B.C., 1969) Canad. Math. Congr., Montreal, Que., 1970, pp. 255 – 263. · Zbl 0238.52002
[25] B. Bollobás, Fixing system for convex bodies, Studia Sci. Math. Hungar 2 (1967), 351 – 354. · Zbl 0156.43103
[26] William Bonnice and Victor L. Klee, The generation of convex hulls, Math. Ann. 152 (1963), 1 – 29. · Zbl 0138.37405
[27] William E. Bonnice and John R. Reay, Relative interiors of convex hulls, Proc. Amer. Math. Soc. 20 (1969), 246 – 250. · Zbl 0167.50901
[28] J. Bosák, Hamiltonian lines in cubic graphs, Theory of Graphs (Internat. Sympos., Rome, 1966) Gordon and Breach, New York; Dunod, Paris, 1967, pp. 35 – 46 (English, with French summary).
[29] Raoul Bott, Two new combinatorial invariants for polyhedra, Portugaliae Math. 11 (1952), 35 – 40. · Zbl 0047.42003
[30] G. Böttger and H. Harders, Note on a problem by S. L. Hakimi concerning planar graphs without parallel elements, J. Soc. Indust. Appl. Math. 12 (1964), 838 – 839. · Zbl 0142.41502
[31] Rufus Bowen and Stephen Fisk, Generations of triangulations of the sphere, Math. Comp. 21 (1967), 250 – 252. · Zbl 0163.18201
[32] Thomas A. Brown, Simple paths on convex polyhedra, Pacific J. Math. 11 (1961), 1211 – 1214. · Zbl 0106.16801
[33] William G. Brown, Historical Note on a Recurrent Combinatorial Problem, Amer. Math. Monthly 72 (1965), no. 9, 973 – 977. · Zbl 0136.21204
[34] H. Bruggesser and P. Mani, Shellable decompositions of cells and spheres, Math. Scand. 29 (1971), 197 – 205 (1972). · Zbl 0251.52013
[35] Stewart S. Cairns, Triangulated manifolds which are not Brouwer manifolds, Proc. Nat. Acad. Sci. U. S. A. 26 (1940), 359 – 361. · Zbl 0027.14302
[36] R. J. Canham, A theorem on arrangements of lines in the plane, Israel J. Math. 7 (1969), 393 – 397. · Zbl 0204.55205
[37] C. Carathéodory, Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen, Math. Ann. 64 (1907), no. 1, 95 – 115 (German). · JFM 38.0448.01
[38] L. Carlitz, The sum of the angles in an \?-dimensional simplex, Amer. Math. Monthly 68 (1961), 901 – 902. · Zbl 0101.37603
[39] J. L. Chrislock, Mathematical Notes: Imbedding a Skeleton of a Simplex in Euclidean Space, Amer. Math. Monthly 73 (1966), no. 4, 381 – 382. · Zbl 0149.20902
[40] Jules Chuard, Graphes planaires homogènes de degré 3, J. Combinatorial Theory 1 (1966), 411 – 436 (French). · Zbl 0144.45104
[41] V. Chvátal, Planarity of graphs with given degrees of vertices, Nieuw Arch. Wisk. (3) 17 (1969), 47 – 60. · Zbl 0183.52104
[42] G. F. Clements, Sets of lattice points which contain a maximal number of edges, Proc. Amer. Math. Soc. 27 (1971), 13 – 15. · Zbl 0216.02001
[43] G. F. Clements and B. Lindström, A generalization of a combinatorial theorem of Macaulay, J. Combinatorial Theory 7 (1969), 230 – 238. · Zbl 0186.01704
[44] Julian Lowell Coolidge, A History of Geometrical Methods, Oxford University Press, New York, 1940. · Zbl 0061.00102
[45] H. S. M. Coxeter, The classification of zonohedra by means of projective diagrams, J. Math. Pures Appl. (9) 41 (1962), 137 – 156. · Zbl 0123.13701
[46] D. W. Crowe, Nearly regular polyhedra with two exceptional faces, The Many Facets of Graph Theory (Proc. Conf., Western Mich. Univ., Kalamazoo, Mich., 1968) Springer, Berlin, 1969, pp. 63 – 76.
[47] Norman C. Dalkey, Parity patterns on even triangulated polygons, J. Combinatorial Theory 2 (1967), 100 – 102. · Zbl 0149.21302
[48] Ludwig Danzer, Branko Grünbaum, and Victor Klee, Helly’s theorem and its relatives, Proc. Sympos. Pure Math., Vol. VII, Amer. Math. Soc., Providence, R.I., 1963, pp. 101 – 180. · Zbl 0132.17401
[49] Chandler Davis, Theory of positive linear dependence, Amer. J. Math. 76 (1954), 733 – 746. · Zbl 0058.25201
[50] D. E. Daykin, Rational polygons, Mathematika 10 (1963), 125 – 131. · Zbl 0123.25801
[51] Hans Debrunner, Zu einem massgeometrischen Satz über Körper konstanter Breite, Math. Nachr. 13 (1955), 165 – 167 (German). · Zbl 0067.40202
[52] Douglas Derry, Polygons of order \? in \?_{\?} with \?+2 vertices, Math. Scand. 23 (1968), 73 – 95 (1969). · Zbl 0183.27001
[53] Alexander Dinghas, Verallgemeinerung eines Blaschkeschen Satzes über konvexe Körper konstanter Breite, Rev. Math. Union Interbalkan. 3 (1940), 17 – 20 (German). · Zbl 0023.38004
[54] R. A. Duke, Geometric embedding of complexes, Amer. Math. Monthly 77 (1970), 597 – 603. · Zbl 0217.49103
[55] H. G. Eggleston, Branko Grünbaum, and Victor Klee, Some semicontinuity theorems for convex polytopes and cell-complexes, Comment. Math. Helv. 39 (1964), 165 – 188. · Zbl 0137.41802
[56] Günter Ewald, Von Klassen konvexer Körper erzeugte Hilberträume, Math. Ann. 162 (1965/1966), 140 – 146 (German). · Zbl 0141.39002
[57] Günter Ewald and Geoffrey C. Shephard, Normed vector spaces consisting of classes of convex sets, Math. Z. 91 (1966), 1 – 19. · Zbl 0141.39003
[58] István Fáry, On straight line representation of planar graphs, Acta Univ. Szeged. Sect. Sci. Math. 11 (1948), 229 – 233. · Zbl 0030.17902
[59] István Fáry, Sur la courbure totale d’une courbe gauche faisant un nœud, Bull. Soc. Math. France 77 (1949), 128 – 138 (French). · Zbl 0037.23604
[60] I. Fáry, Functionals related to mixed volumes, Illinois J. Math. 5 (1961), 425 – 430. · Zbl 0107.39902
[61] P. J. Federico, Enumeration of polyhedra: The number of 9-hedra, J. Combinatorial Theory 7 (1969), 155 – 161. · Zbl 0183.28403
[62] L. Fejes Tóth, On primitive polyhedra, Acta Math. Acad. Sci. Hungar. 13 (1962), 379 – 382. · Zbl 0113.16203
[63] William J. Firey and Branko Grünbaum, Addition and decomposition of convex polytopes, Israel J. Math. 2 (1964), 91 – 100. · Zbl 0131.20102
[64] Harley Flanders, The Steiner point of a closed hypersurface, Mathematika 13 (1966), 181 – 188. · Zbl 0146.17502
[65] David Gale, Neighborly and cyclic polytopes, Proc. Sympos. Pure Math., Vol. VII, Amer. Math. Soc., Providence, R.I., 1963, pp. 225 – 232. · Zbl 0137.41801
[66] È. Ja. Grinberg, Plane homogeneous graphs of degree three without Hamiltonian circuits., Latvian Math. Yearbook, 4 (Russian), Izdat. ”Zinatne”, Riga, 1968, pp. 51 – 58 (Russian, with Latvian and English summaries). · Zbl 0185.27901
[67] Herbert Grötzsch, Zur Theorie der diskreten Gebilde. I. Elementare kombinatorische Eigenschaften gewisser Dreikantnetze auf der Kugel und der einfach punktierten Kugel, Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg. Math.-Nat. Reihe 5 (1955/1956), 839 – 844 (German). Herbert Grötzsch, Zur Theorie der diskreten Gebilde. II. Ein Satz über Vierkantnetze auf der Kugel, mit Anwendung auf beliebige Netze und halbgerade Dreikantnetze auf der Kugel, Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg. Math.-Nat. Reihe 6 (1956/1957), 697 – 704 (German). Herbert Grötzsch, Zur Theorie der diskreten Gebilde. III. Kongruenzklassen von Dreikantnetzen auf der Kugel und diesbezügliche Fragestellungen, Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg. Math.-Nat. Reihe 6 (1956/1957), 785 – 788 (German). Herbert Grötzsch, Zur Theorie der diskreten Gebilde. IV. Beweis des Eckentransformationssatzes (2,1) für Dreikantnetze auf der Kugel, Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg. Math.-Nat. Reihe 6 (1956/1957), 789 – 798 (German).
[68] Herbert Grötzsch, Zur Theorie der diskreten Gebilde. 15. Mitteilung: Zusatzbemerkungen, Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe 11 (1962), 733 – 736 (German). · Zbl 0122.41804
[69] Branko Grünbaum, Unambiguous polyhedral graphs, Israel J. Math. 1 (1963), 235 – 238. · Zbl 0163.18202
[70] Branko Grünbaum, Measures of symmetry for convex sets, Proc. Sympos. Pure Math., Vol. VII, Amer. Math. Soc., Providence, R.I., 1963, pp. 233 – 270. · Zbl 0142.20503
[71] B. Grünbaum, Fixing systems and inner illumination, Acta Math. Acad. Sci. Hungar 15 (1964), 161 – 163. · Zbl 0132.17303
[72] Branko Grünbaum, On the facial structure of convex polytopes, Bull. Amer. Math. Soc. 71 (1965), 559 – 560. · Zbl 0137.18002
[73] Branko Grünbaum, Convex polytopes, With the cooperation of Victor Klee, M. A. Perles and G. C. Shephard. Pure and Applied Mathematics, Vol. 16, Interscience Publishers John Wiley & Sons, Inc., New York, 1967. · Zbl 0152.20602
[74] B. Grünbaum, Some analogues of Eberhard’s theorem on convex polytopes, Israel J. Math. 6 (1968), 398 – 411 (1969). · Zbl 0174.53702
[75] Branko Grünbaum, Grassmann angles of convex polytopes, Acta Math. 121 (1968), 293 – 302. · Zbl 0181.25104
[76] Branko Grünbaum, Planar maps with prescribed types of vertices and faces, Mathematika 16 (1969), 28 – 36. · Zbl 0186.27502
[77] Branko Grünbaum, Graphs, complexes, and polytopes, Recent Progress in Combinatorics (Proc. Third Waterloo Conf. on Combinatorics, 1968) Academic Press, New York, 1969, pp. 85 – 90.
[78] Branko Grünbaum, Some results on the upper bound conjecture for convex polytopes, SIAM J. Appl. Math. 17 (1969), 1142 – 1149. · Zbl 0187.44202
[79] Branko Grünbaum, Imbeddings of simplicial complexes, Comment. Math. Helv. 44 (1969), 502 – 513. · Zbl 0188.28604
[80] Branko Grünbaum, Nerves of simplicial complexes, Aequationes Math. 4 (1970), 63 – 73. · Zbl 0193.52903
[81] Branko Grünbaum, On combinatorial spheres, Combinatorial Structures and their Applications (Proc. Calgary Internat. Conf., Calgary, Alta., 1969) Gordon and Breach, New York, 1970, pp. 119 – 122. · Zbl 0253.05004
[82] Branko Grünbaum, The importance of being straight, Proc. Twelfth Biennial Sem. Canad. Math. Congr. on Time Series and Stochastic Processes; Convexity and Combinatorics (Vancouver, B.C., 1969) Canad. Math. Congr., Montreal, Que., 1970, pp. 243 – 254. · Zbl 0225.50016
[83] Branko Grünbaum, Arrangements and spreads, American Mathematical Society Providence, R.I., 1972. Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 10. · Zbl 0249.50011
[84] Branko Grünbaum, Higher-dimensional analogs of the four-color problem and some inequalities for simplicial complexes, J. Combinatorial Theory 8 (1970), 147 – 153. · Zbl 0199.27204
[85] B. Grünbaum and T. S. Motzkin, Longest simple paths in polyhedral graphs, J. London Math. Soc. 37 (1962), 152 – 160. · Zbl 0106.16802
[86] Branko Grünbaum and Theodore S. Motzkin, On polyhedral graphs, Proc. Sympos. Pure Math., Vol. VII, Amer. Math. Soc., Providence, R.I., 1963, pp. 285 – 290. · Zbl 0137.42902
[87] B. Grünbaum and T. S. Motzkin, The number of hexagons and the simplicity of geodesics on certain polyhedra, Canad. J. Math. 15 (1963), 744 – 751. · Zbl 0121.37605
[88] B. Grünbaum and G. C. Shephard, Convex polytopes, Bull. London Math. Soc. 1 (1969), 257 – 300. · Zbl 0183.26901
[89] Branko Grünbaum and V. P. Sreedharan, An enumeration of simplicial 4-polytopes with 8 vertices, J. Combinatorial Theory 2 (1967), 437 – 465. · Zbl 0156.43304
[90] H. Hadwiger, Vorlesungen über Inhalt, Oberfläche und Isoperimetrie, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1957 (German). · Zbl 0078.35703
[91] H. Hadwiger, Eine Schnittrekursion für die Eulersche Charakteristik euklidischer Polyeder mit Anwendungen innerhalb der kombinatorischen Geometrie, Elem. Math. 23 (1968), 121 – 132 (German). · Zbl 0172.47402
[92] H. Hadwiger, Zur axiomatischen Charakterisierung des Steinerpunktes konvexer Körper, Israel J. Math. 7 (1969), 168 – 176 (German). · Zbl 0182.25004
[93] H. Hadwiger, Eckenkrümmung beliebiger kompakter euklidischer Polyeder und Charakteristik von Euler-Poincaré, Enseignement Math. (2) 15 (1969), 147 – 151 (German). · Zbl 0182.55701
[94] H. Hadwiger, Zur axiomatischen Charakterisierung des Steinerpunktes konvexer Körper, Israel J. Math. 7 (1969), 168 – 176 (German). · Zbl 0182.25004
[95] H. Hadwiger and H. Debrunner, Kombinatorische Geometrie in der Ebene, Monographies de ”L’Enseignement Mathématique”, No. 2, Institut de Mathématiques, Université, Genève, 1960 (German). · Zbl 0089.17302
[96] Hugo Hadwiger and Hans Debrunner, Combinatorial geometry in the plane, Translated by Victor Klee. With a new chapter and other additional material supplied by the translator, Holt, Rinehart and Winston, New York, 1964.
[97] S. L. Hakimi, On realizability of a set of integers as degrees of the vertices of a linear graph. I, J. Soc. Indust. Appl. Math. 10 (1962), 496 – 506. · Zbl 0109.16501
[98] R. Halin, Zu einem Problem von B. Grünbaum, Arch. Math. (Basel) 17 (1966), 566 – 568 (German). · Zbl 0173.26401
[99] G. Hansel, Problèmes de dénombrement et d’évaluation de bornes concernant les éléments du treillis distributif libre, Publ. Inst. Statist. Univ. Paris 16 (1967), 159-218; ibid. 16 (1967), 219 – 300 (French). · Zbl 0172.01901
[100] Wolfhard Hansen and Victor Klee, Intersection theorems for positive sets, Proc. Amer. Math. Soc. 22 (1969), 450 – 457. · Zbl 0179.27404
[101] L. H. Harper, Optimal assignments of numbers to vertices, J. Soc. Indust. Appl. Math. 12 (1964), 131 – 135. · Zbl 0222.94004
[102] K. Hauschild, Über Färbungen von 4-regulären Landkarten, Wiss. Z. Techn. Hochsch. Ilmenau 13 (1967), 399 – 401 (German). · Zbl 0165.26504
[103] Kurt Hauschild, Über ein Färbungsproblem auf der Kugel, Beiträge zur Graphentheorie (Kolloquium, Manebach, 1967) Teubner, Leipzig, 1968, pp. 61 – 70 (German). · Zbl 0182.57801
[104] Walter Höhn, Winkel und Winkelsumme im \?-dimensionalen euklidischen Simplex, Thesis, Eidgenössische Technische Hochschule Zürich, 1953 (German).
[105] Ernest Jucovič, Self-conjugate \?-polyhedra, Mat.-Fyz. Časopis Sloven. Akad. Vied 12 (1962), 1 – 22 (Russian, with German summary).
[106] Ernest Jucovič, A note on paths in quadrangular polyhedral graphs, Časopis Pěst. Mat. 93 (1968), 69 – 72 (Slovak, with English summary).
[107] E. Jucovič, On polyhedral realizability of certain sequences, Canad. Math. Bull. 12 (1969), 31 – 39. · Zbl 0185.48402
[108] Ernest Jucovič, On the number of hexagons in a map, J. Combinatorial Theory Ser. B 10 (1971), 232 – 236. · Zbl 0214.50902
[109] Ernest Jucovič, Characterization of the \?-vector of a self-dual 3-polytope, Combinatorial Structures and their Applications (Proc. Calgary Internat. Conf., Calgary, Alta., 1969) Gordon and Breach, New York, 1970, pp. 185 – 187.
[110] H. A. Jung, Zusammenzüge und Unterteilungen von Graphen, Math. Nachr. 35 (1967), 241 – 267 (German). · Zbl 0171.44803
[111] H. A. Jung, Eine Verallgemeinerung des \?-fachen Zusammenhangs für Graphen, Math. Ann. 187 (1970), 95 – 103 (German). · Zbl 0184.27601
[112] E. R. van Kampen, Remark on the address of S. S. Cairns, Lectures in Topology, University of Michigan Press, Ann Arbor, Mich., 1941, pp. 311 – 313. · Zbl 0063.03120
[113] G. Katona, A theorem of finite sets, Theory of graphs (Proc. Colloq., Tihany, 1966) Academic Press, New York, 1968, pp. 187 – 207.
[114] L. M. Kelly and R. Rottenberg, Simple points in pseudoline arrangements, Pacific J. Math. 40 (1972), 617 – 622. · Zbl 0251.50010
[115] Victor Klee, A property of \?-polyhedral graphs, J. Math. Mech. 13 (1964), 1039 – 1042. · Zbl 0123.17001
[116] Victor Klee, A combinatorial analogue of Poincaré’s duality theorem, Canad. J. Math. 16 (1964), 517 – 531. · Zbl 0134.42403
[117] Victor Klee, On the number of vertices of a convex polytope, Canad. J. Math. 16 (1964), 701 – 720. · Zbl 0128.17201
[118] Victor Klee, Convex polytopes and linear programming, Proc. IBM Sci. Comput. Sympos. Combinatorial Problems (Yorktown Heights, N.Y., 1964) IBM Data Process. Division, White Plains, N.Y., 1966, pp. 123 – 158.
[119] Victor Klee and David W. Walkup, The \?-step conjecture for polyhedra of dimension \?<6, Acta Math. 117 (1967), 53 – 78. · Zbl 0163.16801
[120] Anton Kotzig, Colouring of trivalent polyhedra, Canad. J. Math. 17 (1965), 659 – 664. · Zbl 0137.18003
[121] Joseph B. Kruskal, The number of simplices in a complex, Mathematical optimization techniques, Univ. of California Press, Berkeley, Calif., 1963, pp. 251 – 278. · Zbl 0116.35102
[122] J. B. Kruskal, The number of \?-dimensional faces in a complex: An analogy between the simplex and the cube, J. Combinatorial Theory 6 (1969), 86 – 89. · Zbl 0165.32801
[123] D. G. Larman, Paths of polytopes, Proc. London Math. Soc. (3) 20 (1970), 161 – 178. · Zbl 0199.59301
[124] D. G. Larman and P. Mani, On the existence of certain configurations within graphs and the 1-skeletons of polytopes, Proc. London Math. Soc. (3) 20 (1970), 144 – 160. · Zbl 0201.56801
[125] D. G. Larman and P. Mani, Gleichungen und Ungleichungen für die Gerüste von konvexen Polytopen und Zellenkomplexen, Comment. Math. Helv. 45 (1970), 199 – 218 (German). · Zbl 0188.27501
[126] Joshua Lederberg, Hamilton circuits of convex trivalent polyhedra (up to 18 vertices), Amer. Math. Monthly 74 (1967), 522 – 527. · Zbl 0147.42702
[127] Ke-chun Lee, Kombinatorische Invarianten von endlichem Komplex, Acta Math. Sinica 8 (1958), 473 – 482 (Chinese, with German summary). · Zbl 0136.43803
[128] John H. Lindsey II, Assignment of numbers to vertices, Amer. Math. Monthly 71 (1964), 508 – 516. · Zbl 0279.05019
[129] Bernt Lindström, On the realization of convex polytopes, Euler’s formula and Möbius functions, Aequationes Math. 6 (1971), 235 – 240. · Zbl 0294.52006
[130] Bernt Lindström, The optimal number of faces in cubical complexes, Ark. Mat. 8 (1971), 245 – 257. · Zbl 0221.05021
[131] E. Keith Lloyd, The number of \?-polytopes with \?+3 vertices, Mathematika 17 (1970), 120 – 132. · Zbl 0214.02901
[132] L. A. Lyusternik, Convex figures and polyhedra, Translated from the Russian by T. Jefferson Smith, Dover Publications, Inc., New York, 1963. · Zbl 0113.16201
[133] I. G. Macdonald, Polynomials associated with finite cell-complexes, J. London Math. Soc. (2) 4 (1971), 181 – 192. · Zbl 0216.45205
[134] W. Mader, Homomorphieeigenschaften und mittlere Kantendichte von Graphen, Math. Ann. 174 (1967), 265 – 268 (German). · Zbl 0171.22405
[135] W. Mader, Homomorphiesätze für Graphen, Math. Ann. 178 (1968), 154 – 168 (German). · Zbl 0165.57401
[136] Joseph Malkevitch, Properties of planar graphs with uniform vertex and face structure., Memoirs of the American Mathematical Society, No. 99, American Mathematical Society, Providence, R.I., 1970. · Zbl 0196.27203
[137] Joseph Malkevitch, Properties of planar graphs with uniform vertex and face structure., Memoirs of the American Mathematical Society, No. 99, American Mathematical Society, Providence, R.I., 1970. · Zbl 0196.27203
[138] P. Mani, Spheres with few vertices, J. Combinatorial Theory Ser. A 13 (1972), 346 – 352. · Zbl 0248.52006
[139] P. Mani, On angle sums and Steiner points of polyhedra, Israel J. Math. 9 (1971), 380 – 388. · Zbl 0214.20901
[140] P. Mani, On polytopes fixed by their vertices, Acta Math. Acad. Sci. Hungar. 22 (1971/72), 269 – 273. · Zbl 0251.52010
[141] P. Mani, Automorphismen von polyedrischen Graphen, Math. Ann. 192 (1971), 279 – 303 (German). · Zbl 0206.51402
[142] Richard L. McKinney, Positive bases for linear spaces, Trans. Amer. Math. Soc. 103 (1962), 131 – 148. · Zbl 0115.32901
[143] P. McMullen, Linearly stable polytopes, Canad. J. Math. 21 (1969), 1427 – 1431. · Zbl 0187.19602
[144] P. McMullen, On the upper-bound conjecture for convex polytopes, J. Combinatorial Theory Ser. B 10 (1971), 187 – 200. · Zbl 0172.47401
[145] P. McMullen, On the upper-bound conjecture for convex polytopes, J. Combinatorial Theory Ser. B 10 (1971), 187 – 200. · Zbl 0172.47401
[146] P. McMullen, On a problem of Klee concerning convex polytopes, Israel J. Math. 8 (1970), 1 – 4. · Zbl 0194.53802
[147] P. McMullen, On zonotopes, Trans. Amer. Math. Soc. 159 (1971), 91 – 109. · Zbl 0223.52007
[148] P. McMullen, Polytopes with centrally symmetric faces, Israel J. Math. 8 (1970), 194 – 196. · Zbl 0203.54903
[149] P. McMullen, The maximum numbers of faces of a convex polytope, Mathematika 17 (1970), 179 – 184. · Zbl 0217.46703
[150] P. McMullen and G. C. Shephard, Diagrams for centrally symmetric polytopes, Mathematika 15 (1968), 123 – 138. · Zbl 0167.50902
[151] P. McMullen and G. C. Shephard, Polytopes with an axis of symmetry, Canad. J. Math. 22 (1970), 265 – 287. · Zbl 0195.24201
[152] P. McMullen and D. W. Walkup, A generalized lower-bound conjecture for simplicial polytopes, Mathematika 18 (1971), 264 – 273. · Zbl 0233.52003
[153] D. M. Mesner and M. E. Watkins, Some theorems about \?-vertex connected graphs, J. Math. Mech. 16 (1966), 321 – 326. · Zbl 0168.21605
[154] Hermann Minkowski, Volumen und Oberfläche, Math. Ann. 57 (1903), no. 4, 447 – 495 (German). · JFM 34.0649.01
[155] J. W. Moon and L. Moser, Simple paths on polyhedra, Pacific J. Math. 13 (1963), 629 – 631. · Zbl 0115.41001
[156] L. J. Mordell, Rational quadrilaterals, J. London Math. Soc. 35 (1960), 277 – 282. · Zbl 0096.26104
[157] Theodore S. Motzkin, The evenness of the number of edges of a convex polyhedron, Proc. Nat. Acad. Sci. U.S.A. 52 (1964), 44 – 45. · Zbl 0121.37606
[158] Theodore S. Motzkin, Cooperative classes of finite sets in one and more dimensions, J. Combinatorial Theory 3 (1967), 244 – 251. · Zbl 0203.01403
[159] Hans Robert Müller, Zur axiomatischen Begründung der Eikörperfunktionale, Monatsh. Math. 71 (1967), 338 – 343 (German). · Zbl 0168.43302
[160] Oystein Ore, The four-color problem, Pure and Applied Mathematics, Vol. 27, Academic Press, New York-London, 1967.
[161] M. A. Perles and G. T. Sallee, Cell complexes, valuations, and the Euler relation, Canad. J. Math. 22 (1970), 235 – 241. · Zbl 0205.52503
[162] M. A. Perles and G. C. Shephard, Facets and nonfacets of convex polytopes, Acta Math. 119 (1967), 113 – 145. · Zbl 0161.19301
[163] M. A. Perles and G. C. Shephard, Angle sums of convex polytopes, Math. Scand. 21 (1967), 199 – 218 (1969). · Zbl 0172.23703
[164] Hans Rademacher, On the number of certain types of polyhedra, Illinois J. Math. 9 (1965), 361 – 380. · Zbl 0151.26301
[165] John R. Reay, A new proof of the Bonice-Klee theorem, Proc. Amer. Math. Soc. 16 (1965), 585 – 587. · Zbl 0138.37501
[166] John R. Reay, Generalizations of a theorem of Carathéodory, Mem. Amer. Math. Soc. No. 54 (1965), 50.
[167] J. R. Reay, Unique minimal representations with positive bases, Amer. Math. Monthly 73 (1966), 253 – 261. · Zbl 0137.15103
[168] John R. Reay, Positive bases as a tool in convexity, Proc. Colloquium on Convexity (Copenhagen, 1965) Kobenhavns Univ. Mat. Inst., Copenhagen, 1967, pp. 255 – 260.
[169] John R. Reay, An extension of Radon’s theorem, Illinois J. Math. 12 (1968), 184 – 189. · Zbl 0153.52001
[170] E. Ja. Remez and A. S. Šteĭnberg, On a theorem on convex polyhedra in connection with the question of finding the totality of solutions of systems of linear inequalities, Ukrain. Mat. Ž. 19 (1967), no. 2, 74 – 89 (Russian).
[171] Kurt Reidemeister and Klaus Horneffer, Zur Färbung von Simplizialkomplexen der Sphäre, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 1968 (1968), 171 – 182 (German). · Zbl 0165.57203
[172] Gerhard Ringel, Teilungen der Ebene durch Geraden oder topologische Geraden, Math. Z. 64 (1955), 79 – 102 (1956) (German). · Zbl 0070.16108
[173] G. Ringel, Über Geraden in allgemeiner Lage, Elem. Math. 12 (1957), 75 – 82 (German). · Zbl 0078.34501
[174] John Riordan, The number of faces of simplicial polytopes, J. Combinatorial Theory 1 (1966), 82 – 95. · Zbl 0148.01103
[175] Horst Sachs, Ein von Kozyrev und Grinberg angegebener nicht-hamiltonscher kubischer planarer Graph, Beiträge zur Graphentheorie (Kolloquium, Manebach, 1967) Teubner, Leipzig, 1968, pp. 127 – 130 (German). · Zbl 0169.26402
[176] G. T. Sallee, A valuation property of Steiner points, Mathematika 13 (1966), 76 – 82. · Zbl 0146.44203
[177] G. T. Sallee, Incidence graphs of convex polytopes, J. Combinatorial Theory 2 (1967), 466 – 506. · Zbl 0152.41003
[178] G. T. Sallee, Polytopes, valuations, and the Euler relation, Canad. J. Math. 20 (1968), 1412 – 1424. · Zbl 0165.56301
[179] G. T. Sallee, A non-continuous ”Steiner point”, Israel J. Math. 10 (1971), 1 – 5. · Zbl 0222.52007
[180] L. A. Santaló, On the convex bodies of constant width in \?_{\?}, Portugaliae Math. 5 (1946), 195 – 201 (Spanish).
[181] Peter Scherk, Über eine Klasse von Polyederfunktionalen, Comment. Math. Helv. 44 (1969), 191 – 201 (German). · Zbl 0185.50203
[182] Karl-Adolf Schmitt, Kennzeichnung des Steinerpunktes konvexer Körper, Math. Z. 105 (1968), 387 – 392 (German). · Zbl 0162.25802
[183] Rolf Schneider, Zur einem Problem von Shephard über die Projektionen konvexer Körper, Math. Z. 101 (1967), 71 – 82 (German). · Zbl 0173.24703
[184] Rolf Schneider, Über die Durchschnitte translationsgleicher konvexer Körper und eine Klasse konvexer Polyeder, Abh. Math. Sem. Univ. Hamburg 30 (1967), 118 – 128 (German). · Zbl 0163.44105
[185] Rolf Schneider, On Steiner points of convex bodies, Israel J. Math. 9 (1971), 241 – 249. · Zbl 0208.50402
[186] T. K. Sheng, Rational polygons, J. Austral. Math. Soc. 6 (1966), 452 – 459. · Zbl 0146.06204
[187] G. C. Shephard, Approximation problems for convex polyhedra, Mathematika 11 (1964), 9 – 18. · Zbl 0124.37801
[188] G. C. Shephard, The Steiner point of a convex polytope, Canad. J. Math. 18 (1966), 1294 – 1300. · Zbl 0145.42801
[189] G. C. Shephard, A pre-Hilbert space consisting of classes of convex sets, Israel J. Math. 4 (1966), 1 – 10. · Zbl 0146.18203
[190] G. C. Shephard, An elementary proof of Gram’s theorem for convex polytopes, Canad. J. Math. 19 (1967), 1214 – 1217. · Zbl 0157.52504
[191] G. C. Shephard, Polytopes with centrally symmetric faces, Canad. J. Math. 19 (1967), 1206 – 1213. · Zbl 0171.43101
[192] G. C. Shephard, Angle deficiencies of convex polytopes, J. London Math. Soc. 43 (1968), 325 – 336. · Zbl 0159.51801
[193] G. C. Shephard, A uniqueness theorem for the Steiner point of a convex region, J. London Math. Soc. 43 (1968), 439 – 444. · Zbl 0162.25801
[194] G. C. Shephard, Euler-type relations for convex polytopes, Proc. London Math. Soc. (3) 18 (1968), 597 – 606. · Zbl 0159.51703
[195] G. C. Shephard, A theorem on cyclic polytopes, Israel J. Math. 6 (1968), 368 – 372 (1969). · Zbl 0174.25403
[196] G. C. Shephard, The mean width of a convex polytope, J. London Math. Soc. 43 (1968), 207 – 209. · Zbl 0159.51704
[197] G. C. Shephard, Diagrams for positive bases, J. London Math. Soc. (2) 4 (1971), 165 – 175. · Zbl 0225.15004
[198] G. C. Shephard, Spherical complexes and radial projections of polytopes, Israel J. Math. 9 (1971), 257 – 262. · Zbl 0207.52202
[199] G. C. Shephard and R. J. Webster, Metrics for sets of convex bodies, Mathematika 12 (1965), 73 – 88. · Zbl 0144.21303
[200] S. K. Stein, Convex maps, Proc. Amer. Math. Soc. 2 (1951), 464 – 466. · Zbl 0042.42004
[201] Josef Stoer and Christoph Witzgall, Convexity and optimization in finite dimensions. I, Die Grundlehren der mathematischen Wissenschaften, Band 163, Springer-Verlag, New York-Berlin, 1970. · Zbl 0203.52203
[202] Mirko Stojaković, Über die Konstruktion der ebenen Graphen, Univ. Beograd. Godišnjak Filozof. Fak. Novom Sadu 4 (1959), 375 – 378 (English, with Serbo-Croation summary). · Zbl 0094.36302
[203] Fred Supnick, On the perspective deformation of polyhedra. II. Solution of the convexity problem, Ann. of Math. (2) 53 (1951), 551 – 555. · Zbl 0054.06205
[204] W. T. Tutte, On Hamiltonian circuits, J. London Math. Soc. 21 (1946), 98 – 101. · Zbl 0061.41306
[205] W. T. Tutte, A theorem on planar graphs, Trans. Amer. Math. Soc. 82 (1956), 99 – 116. · Zbl 0070.18403
[206] W. T. Tutte, Convex representations of graphs, Proc. London Math. Soc. (3) 10 (1960), 304 – 320. · Zbl 0094.36301
[207] W. T. Tutte, A non-Hamiltonian planar graph, Acta Math. Acad. Sci. Hungar. 11 (1960), 371 – 375 (English, with Russian summary). · Zbl 0103.16202
[208] W. T. Tutte, A theory of 3-connected graphs, Nederl. Akad. Wetensch. Proc. Ser. A 64 = Indag. Math. 23 (1961), 441 – 455. · Zbl 0101.40903
[209] W. T. Tutte, How to draw a graph, Proc. London Math. Soc. (3) 13 (1963), 743 – 767. · Zbl 0115.40805
[210] W. T. Tutte, On the enumeration of planar maps, Bull. Amer. Math. Soc. 74 (1968), 64 – 74. · Zbl 0157.31101
[211] S. M. Ulam, A collection of mathematical problems, Interscience Tracts in Pure and Applied Mathematics, no. 8, Interscience Publishers, New York-London, 1960. · Zbl 0086.24101
[212] Michelangelo Vaccaro, Sulla caratteristica dei complessi simpliciali \?-omogenei, Ann. Mat. Pura Appl. (4) 41 (1956), 1 – 20 (Italian). · Zbl 0072.40502
[213] Walter Volland, Ein Fortsetzungssatz für additive Eipolyederfunktionale im euklidischen Raum, Arch. Math. (Basel) 8 (1957), 144 – 149 (German). · Zbl 0078.35801
[214] David W. Walkup, The lower bound conjecture for 3- and 4-manifolds, Acta Math. 125 (1970), 75 – 107. · Zbl 0204.56301
[215] H. Walther, Ein kubischer, planarer, zyklisch fünffach zusammenhängender Graph, der keinen Hamiltonkreis besitzt, Wiss. Z. Techn. Hochsch. Ilmenau 11 (1965), 163 – 166 (German). · Zbl 0135.42002
[216] H. Walther, Über die Anzahl der Knotenpunkte eines längsten Kreises in planaren, kubischen, dreifach knotenzusammenhängenden Graphen, Studia Sci. Math. Hungar. 2 (1967), 391 – 398 (German). · Zbl 0171.22404
[217] Hansjoachim Walther, Über das Problem der Existenz von Hamiltonkreisen in planaren, regulären Graphen, Math. Nachr. 39 (1969), 277 – 296 (German). · Zbl 0169.26401
[218] Hansjoachim Walther, Über die Nichtexistenz eines Knotenpunktes, durch den alle längsten Wege eines Graphen gehen, J. Combinatorial Theory 6 (1969), 1 – 6 (German). · Zbl 0184.27504
[219] Mark E. Watkins, On the existence of certain disjoint arcs in graphs, Duke Math. J. 35 (1968), 231 – 246. · Zbl 0176.22301
[220] M. E. Watkins and D. M. Mesner, Cycles and connectivity in graphs, Canad. J. Math. 19 (1967), 1319 – 1328. · Zbl 0205.28501
[221] Hassler Whitney, Non-separable and planar graphs, Trans. Amer. Math. Soc. 34 (1932), no. 2, 339 – 362. · Zbl 0004.13103
[222] Lin Woo, An algorithm for straight-line representation of simple planar graphs., J. Franklin Inst. 287 (1969), 197 – 208. · Zbl 0207.22902
[223] Wu Wen-tsün, A theory of imbedding, immersion, and isotopy of polytopes in a euclidean space, Science Press, Peking, 1965. · Zbl 0177.26402
[224] Joseph Zaks, On minimal complexes, Pacific J. Math. 28 (1969), 721 – 727. · Zbl 0172.48702
[225] Joseph Zaks, On a minimality property of complexes, Proc. Amer. Math. Soc. 20 (1969), 439 – 444. · Zbl 0176.53204
[226] Joseph Zaks, On realizing symmetric 3-polytopes, Israel J. Math. 10 (1971), 244 – 251. · Zbl 0224.52005
[227] Joseph Zaks, The analogue of Eberhard’s theorem for 4-valent graphs on the torus., Israel J. Math. 9 (1971), 299 – 305. · Zbl 0222.05103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.