Andersson, K. G. Propagation of analyticity of solutions of partial differential equations with constant coefficients. (English) Zbl 0211.40502 Ark. Mat. 8, 277-302 (1971). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 26 Documents MSC: 35E20 General theory of PDEs and systems of PDEs with constant coefficients PDF BibTeX XML Cite \textit{K. G. Andersson}, Ark. Mat. 8, 277--302 (1971; Zbl 0211.40502) Full Text: DOI References: [1] Andersson, K. G., Analyticity of fundamental solutions, Ark. Mat.8, 73–81 (1970). · Zbl 0193.38103 [2] Atiyah, M. F., Bott, R. andGårding, L., Lacunas for hyperbolic differential operators with constant coefficients I, Acta Math.124, 109–189 (1970). · Zbl 0191.11203 [3] Ehrenpreis, L., Solutions of some problems of division IV. Invertible and elliptic operators, Amer. J. Math.82, 522–588 (1960). · Zbl 0098.08401 [4] Grušin, V. V., The extension of smoothness of solutions of differential equations of principal type, Soviet Math.4, 248–251 (1963). [5] Hörmander, L., Linear partial differential operators. Springer. 1963. · Zbl 0108.09301 [6] – On the singularities of solutions of partial differential equations, Comm. Pure Appl. Math.23 (1970). · Zbl 0193.06603 [7] Mandelbrojt, S., Séries adhérentes. Régularisation des suites. Applications. Gauthier-Villars, 1952. [8] Svensson, S. L., Necessary and sufficient conditions for the hyperbolicity of polynomials with hyperbolic principal part, Ark. Math.8, 145–162 (1970). · Zbl 0203.40903 [9] Trèves, F., Linear partial differential equations with constant coefficients. Gordon & Breach, 1966. · Zbl 0164.40602 [10] Trèves, F. andZerner, M., Zones d’analyticité des solutions élémentaires, Bull. Soc. Math. Fr.95, 155–191 (1967). [11] Zerner, M., Solutions singulières d’équations aux dérivées partielles, Bull. Soc. Math. Fr.91, 203–226 (1963). · Zbl 0196.39001 [12] Sato, M., Hyperfunctions and partial differential equations, Proc. Int. Congr. Math. Nice 1970. · Zbl 0208.35801 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.