zbMATH — the first resource for mathematics

Every countable-codimensional subspace of a barrelled space is barrelled. (English) Zbl 0212.14105

46A08 Barrelled spaces, bornological spaces
46A45 Sequence spaces (including Köthe sequence spaces)
Full Text: DOI
[1] Ichiro Amemiya and Yukio Kōmura, Über nicht-vollständige Montelräume, Math. Ann. 177 (1968), 273 – 277 (German). · Zbl 0157.43903 · doi:10.1007/BF01350719 · doi.org
[2] N. Bourbaki, Eléments de mathématique. XVIII. Première partie: Les structures fondamentales de l’analyse. Livre V: Espaces vectoriels topologiques. Chapitre III: Espaces d’applications linéaires continues. Chapitre IV: La dualité dans les espaces vectoriels topologiques. Chapitre V: Espaces hilbertiens, Actualités Sci. Ind., no. 1229, Hermann & Cie, Paris, 1955 (French). · Zbl 0066.35301
[3] J. Dieudonné, Sur les propriétés de permanence de certains espaces vectoriels topologiques, Ann. Soc. Polon. Math. 25 (1952), 50 – 55 (1953) (French). · Zbl 0049.08202
[4] R. E. Edwards, Functional analysis. Theory and applications, Holt, Rinehart and Winston, New York-Toronto-London, 1965. · Zbl 0182.16101
[5] John Horváth, Topological vector spaces and distributions. Vol. I, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1966.
[6] Tosio Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Analyse Math. 6 (1958), 261 – 322. · Zbl 0090.09003 · doi:10.1007/BF02790238 · doi.org
[7] Gottfried Köthe, Die Bildräume abgeschlossener Operatoren, J. Reine Angew. Math. 232 (1968), 110 – 111 (German). · Zbl 0157.21003 · doi:10.1515/crll.1968.232.110 · doi.org
[8] Mark Levin and Stephen Saxon, A note on the inheritance of properties of locally convex spaces by subspaces of countable codimension, Proc. Amer. Math. Soc. 29 (1971), 97 – 102. · Zbl 0212.14104
[9] S. Saxon, Basis cone base theory, Dissertation, Florida State University, Tallahassee, Fla., 1969 (unpublished).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.