×

The category of cofinal types. II. (English) Zbl 0212.32701


MSC:

03E10 Ordinal and cardinal numbers
03E50 Continuum hypothesis and Martin’s axiom

Citations:

Zbl 0212.32602
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] P. Erdös, L. Gillman, and M. Henriksen, An isomorphism theorem for real-closed fields, Ann. of Math. (2) 61 (1955), 542 – 554. · Zbl 0065.02305
[2] N. J. Fine and L. Gillman, Extension of continuous functions in \?\?, Bull. Amer. Math. Soc. 66 (1960), 376 – 381. · Zbl 0161.42203
[3] Seymour Ginsburg and J. R. Isbell, The category of cofinal types. I, Trans. Amer. Math. Soc. 116 (1965), 386 – 393. · Zbl 0212.32602
[4] F. Mahlo, Über lineare transfinite Mengen, Ber. Verh. Sächs. Ges. Wiss. Leipzig 63 (1911), 187-225. · JFM 42.0090.02
[5] Edward Szpilrajn, Remarque sur les produits cartésiens d’espaces topologiques, C. R. (Doklady) Acad. Sci. URSS (N. S.) 31 (1941), 525 – 527 (French). · Zbl 0025.23903
[6] Jürgen Schmidt, Konfinalität, Z. Math. Logik Grundlagen Math. 1 (1955), 271 – 303 (German). · Zbl 0067.02903
[7] John W. Tukey, Convergence and Uniformity in Topology, Annals of Mathematics Studies, no. 2, Princeton University Press, Princeton, N. J., 1940. · Zbl 0025.09102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.