Labute, J. P. Algèbres de Lie et pro-p-groupes définis par une seule relation. (French) Zbl 0212.36303 Invent. Math. 4, 142-158 (1967). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 29 Documents MSC: 20E05 Free nonabelian groups 20J05 Homological methods in group theory 22E99 Lie groups PDF BibTeX XML Cite \textit{J. P. Labute}, Invent. Math. 4, 142--158 (1967; Zbl 0212.36303) Full Text: DOI EuDML OpenURL References: [1] Baumslag, G.: Residual nilpotence and relations in free groups. J. Algebra2, 271-282 (1965). · Zbl 0131.02201 [2] Bourbaki, N.: Groupes et algèbres de Lie, Ch. 1. Act. scient. et ind., 1285. Paris: Hermann 1960. [3] Brumer, A.: Pseudocompakt algebras, profinite groups and class formations. J. Algebra4, 442-470 (1966). · Zbl 0146.04702 [4] Cartan, H., andS. Ellenberg: Homological algebra. Princeton Math. Ser., No. 19, Princeton 1956. · Zbl 0075.24305 [5] Gildenhuys, D.: An embedding theorem for pro-p-groups, derivations of pro-p-groups and applications to fields and cohomology, Thesis, McGill Univ., 1966. [6] Labute, J.: Classification of Demu?kin groups. Can. J. Math.19, 106-132 (1967). · Zbl 0153.04202 [7] Labute, J.: Demu?kin groups of rank ?0. Bull. Soc. Math. France94, 211-244 (1966). · Zbl 0154.02001 [8] Lazard, M.: Groupes analytiquesp-adiques. Publ. Inst. Hautes Etudes Sci. No. 26. Paris 1965. · Zbl 0139.02302 [9] Lyndon, R.: Cohomology theory of groups with a single defining relation. Ann. Math.52, 650-665 (1950). · Zbl 0039.02302 [10] Serre, J.-P.: Structure de certains pro-p-groups. Séminaire Bourbaki15, n{\(\deg\)} 252, 11 p. (1962/63). [11] Serre, J.-P.: Cohomologie galoisienne. (Lecture Notes in Mathematics, 5.) Berlin-Göttingen-Heidelberg: Springer 1964. · Zbl 0143.05901 [12] ?: Lie algebras and Lie groups. 1964. Lectures given at Harvard University. New York: W. A. Benjamin 1965. · Zbl 0132.27803 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.